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1 Introduction

The study of systems with reduced dimensionality has been revitalized by the recent re-
alization of graphene sheets. Since then graphene has triggered intensive research equally
on the theoretical and experimental sides [28]. The spectrum of scientific research ranges
from studies of BCS-BEC crossover of the attractive Hubbard model [11] to the very re-
cent discovery of giant intrinsic carrier mobilities in single and bilayer graphene [10].
To form graphene carbon atoms crystallize in the honeycomb lattice. The electrons interact
with the resulting periodic potential and display an unprecedented low energy behaviour.
The excitations satisfy the massless Dirac equation as opposed to the Schrödinger equa-
tion which usually describes the electronic properties of materials. These massless Dirac
fermions allow for several analogies with QED. As a consequence of the bipartite nature of
the honeycomb lattice one may introduce a spin index called pseudospin to discriminate
between the sublattices and evoke the concept of chirality [32].
Although the role of many-body interactions in graphene remains unclear so far modi-
fications of the band structure which cannot be explained in terms of a single electron
picture have been found. The observed kinks near the Fermi energy were atrributed to
electron-phonon and elctron-plasmon interactions [29].
In this thesis the Hubbard model on the honeycomb lattice in an external magnetic field
is studied. The tight-binding band diplays two inequivalent cone shaped singularities,
the so called Dirac points which are located in the Brillouin zone where upper and lower
band touch each other (Fig. 1.1). Consequently, in the honeycomb lattice at half filling
the Fermi surface geometry is pointlike and the Fermi surface density of states vanishes
linearly. A spin density wave instability according to the Stoner criterion therefore does
not develop in the honeycomb lattice at an infinitesimally small U . It has been shown
that the symnetry breaking phase transtions occurs at a finite Uc and coincides with a
Mott-Hubbard transition [13].
Introducing a magnetic field changes the Fermi surface geometry towards a circular-like
shape and generates a finite density of states at the Fermi level. Nesting between up and
down spin Fermi surface leads to a Stoner like instability towards canted antiferromagnetic
order.
Since the Stoner criterion is a mean-field result a saddle point approximation should cap-
ture much of the underlying physics. We use this approach as a starting point. Treating
the electron-electron interaction correctly with numerical quantum Monte Carlo simula-
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1 Introduction

Figure 1.1: Photoemission intensity pattern of single (a) and bilayer (b) graphene along the high
symmetry direction Γ-K-M -Γ which reflects its band structure. The dashed blue lines have been
included for comparison with a density functional calculation. The figure is taken from [12].

tions this picture is confirmed to a good degree. A critical U of order Uc ≈ 4−5 is observed
in accordance with what has been found out previously [13]. We show that under the ac-
tion of the field the critical U is lowered from the strong interaction of the free system
towards an experimentally more accesible region. The transition takes the semimetal to
an canted antiferromagnet which is heralded by the opening of a gap in the excitation
spectrum.
The thesis is organized as follows. In chapter one the model Hamiltonian is introduced
and is studied on a mean field level. By studying the transverse susceptibility we show
that under the action of a vertical magnetic field the system gets logarithmically insta-
ble. This chapter concludes with the evaluation of the single-particle spectral function
and the concomitant density of states. The chapters two and three are rather technical
and include the foundations for the numerical treatment of the many-body problem. The
quantum Monte Carlo approach, more precisely the projector quantum Monte Carlo al-
gorithm, is explained and big emphasize lies on the stable computation of observables.
Finally, in chapter four the numerically obtained static and dynamic results which include
the staggered magnetization and the excitation spectra are discussed.

6



2 Mean Field Treatment

The standard model to describe the electronic and magnetic properties of correlated elec-
trons on a lattice is the Hubbard model. Being conceptually simple this model incorpo-
rates two opposing trends: electron hopping which tends to delocalize the electrons and
electron-electron interactions leading to localization. In this chapter the hexagonal lattice
is discussed in the context of the Hubbard model.
The complexity of many particle problems can be dramatically reduced by a molecular
field approximation. This approximation replaces the electron-electron interaction term
in the Hamiltonian with effective one body expressions, thereby neglecting fluctuations of
the particle operators. The idea is that fluctuations only play the role of small oscillations
around the mean value of a physical observable. Given this simplification the interaction
acts like a space and spin dependent external field, the molecular field. The molecular
field is the one which minimizes the free energy. The problem is thus tractable on a mean
field level, that is one may diagonalize the Hamiltonian and describe phase transitions.
The prize we have to pay is the loss of information since effects governed by real electron
correlations are lost. On the other hand the physical significance of the mean field solution
is limited, since the assumptions needed to decouple the interaction term essentially are
reconfirmed in the end. Nevertheless the mean field treatment serves a valuable starting
point for more detailed analytical techniques or numerical approaches like the Quantum
Monte Carlo method. The molecular field method is a self-consistent approximation and
helps to understand fundamental properties of the hexagonal lattice. It is used to quali-
tatively describe the paramagnetic and antiferromagnetic phase and to extract the single
particle spectral function.

2.1 The model Hamiltonian

The generic Hamilton operator in the Hubbard model is

H = HT + HI = −
∑
i,j,σ

(ti,j − µ)ĉ†i,σ ĉj,σ + U
∑

i

n̂i,↑n̂i,↓ . (2.1)

Here ti,j are hopping integrals, U is the on-site repulsion, µ is the chemical potential
and n̂i,σ = ĉ†i,σ ĉi,σ is the electron density operator. In the following we assume strongly
localized Wannier orbitals that we restrict ourselves to hopping processes to the nearest
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2 Mean Field Treatment

neighbours, with ti,j ≡ t. In the case of half-filling µ = 0.
The lattice vectors are

a1 = a

 1/2
√

3/2

 a2 = a

1

0

 , (2.2)

a is the distance of neighbouring sites on sublattice A and B. The term of kinetic energy
contains the hopping processes on the bipartite lattice and it reads

HT = −t
∑

R, σ, â∈A, b̂∈B

(â†R,σ b̂R,σ + â†R,σ b̂R+a2−a1,σ + â†R,σ b̂R−a1,σ) + h.c.

= −t
∑
k,σ

(
â†k,σ b̂†k,σ

)H11 H12

H21 H22

âk,σ

b̂k,σ

 , (2.3)

with

H11 = H22 = 0

H12 = H∗
21 = 1 + eık(a2−a1) + e−ıka1 (2.4)

Upon diagonalization of the Hermitian Hamilton matrix one gets the two tight binding
bands1 (Fig. 2.1)

Γ±(k) = ±
√

3 + 2 cosk(a2 − a1) + 2 coska1 + 2 coska2 . (2.5)

Figure 2.1: Energy spectrum Γ(kx, ky) of the two dim. hexagonal lattice, based on the assumption
of free electrons (tight-binding model). Valence and conduction band touch each other at the so-
called Dirac points and the energy gap vanishes.

1Here and in the following we set t ≡ 1.
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2.2 Examination of the transversal susceptibility

2.2 Examination of the transversal susceptibility

In this section we concentrate on possible magnetic instabilities of the free Hamilto-
nian under the action of a vertical magnetic field (conventionally chosen as B = Bez),
H = HT + Hfield. Magnetic order is heralded by the divergence of the appropriate mag-
netic susceptibility when the temperature goes to zero. Here we look at the possibility of
staggered antiferromagnetic order in the transversal plane of the lattice.
The Hamiltonian can easily be diagonalized to

H = HT +
B

2

∑
A,B

∑
k,σ

pσn̂σ

=
∑
k,σ

Eγ (k, σ)γ̂†γ̂ + Eη(k, σ) η̂†η̂ (2.6)

The quasi particle energies2 are Eγ,η(k, σ) = B
2 pσ ∓ Γ(k), pσ = ±1, and the particle oper-

ators are

γ̂ =
1√
2

(
â +

Γ
H21

b̂

)
,

η̂ =
1√
2

(
−Γ
H12

â + b̂

)
,

â =
1√
2

(
γ̂ − Γ

H21
η̂

)
,

b̂ =
1√
2

(
Γ

H12
γ̂ + η̂

)
. (2.7)

Correlation functions like the single particle Green function or the susceptibility are 2× 2
matrices as a consequence of the two sublattices used to describe the hexagonal lattice.
In particular the tensorial nature of the transversal spin susceptibility χ+− lies in the two
orbitals per unit cell and is not due to anisotropy effects. The tensor of the transversal
susceptibility is:

χ+−(q, ω) =

χ+−
AA χ+−

AB

χ+−
BA χ+−

BB

 (2.8)

From now on we are only concerned with the static case, χ+−(q) ≡ χ+−(q, ω = 0). Within
the Matsubara formalism3 the components are defined as

χ+−
µ,ν (q) =

∫ β

0
dτ〈S+

µ (q, τ)S−
ν (-q, 0)〉 . (2.9)

2Here, Γ ≡ Γ+.
3In this work, the modified Heisenberg picture is employed to describe the time evolution in imaginary

time, that is A(τ) = eHτA(0)e−Hτ . [1],[3]. For notational clarity, we have set h̄ ≡ 1 in the whole text.
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2 Mean Field Treatment

The indices are µ = A,B, ν = A,B and the spin raising and lowering operators are

S+(−)
µ (q) =

1√
N

∑
k

ĉ†µk,↑(↓)
ĉµk+q,↓(↑) , (2.10)

with the particle operators ĉA = â, ĉB = b̂ on the sublattices. For later use we note that
χ+−

µ,µ = χ+−
ν,ν and χ+−

µ,ν = (χ+−
ν,µ )∗, in the static (ω = 0) case χ+−

µ,ν = χ+−
ν,µ . The transversal

magnetization on orbital µ amounts to

mxy
µ =

∑
α=µ,ν

χ+−
µ,αBxy

α . (2.11)

Bxy
α are the orbital components of a transversal magnetic field. For Bxy

µ = −Bxy
ν we

obtain the antiferromagnetic susceptibility χ+−
µµ − χ+−

µν , for Bxy
µ = Bxy

ν the ferromagnetic
susceptibility χ+−

µµ + χ+−
µν . Since the ordering takes places within the orbitals at formally

the same lattice point it can be characterized with the wave vector q = 0. However, for
reasons of generality we keep the vector q during the calculation and in the end we set it
equal to zero.
The components χ+−

µ,ν (q) may be calculated applying Wick’s theorem and using the quasi-
particle expressions for γ̂ und η̂ (2.7):

χ+−
µ,ν (q) =

∫ β

0
dτ〈S+

µ (q, τ)S−
ν (−q, 0)〉 (2.12)

=
1
N

∫ β

0
dτ
∑
k,k′

〈ĉ†µk,↑
(τ)ĉµk+q,↓(τ)ĉ†νk′,↓

(0)ĉνk′−q,↑(0)〉

=
1
N

∫ β

0
dτ
∑
k,k′

〈ĉ†µk,↑
(τ)ĉµk+q,↓(τ)〉〈ĉ†νk′,↓

(0)ĉνk′−q,↑(0)〉

+〈ĉ†µk,↑
(τ)ĉνk′−q,↑(0)〉〈ĉµk+q,↓(τ)ĉ†νk′,↓

(0)〉

=
1
N

∫ β

0
dτ
∑
k

〈ĉ†µk,↑
(τ)ĉνk,↑(0)〉〈ĉµk+q,↓(τ)ĉ†νk+q,↓

(0)〉

=
1

4N

∫ β

0
dτ
∑
k

(
〈γ̂†(τ)γ̂(0)〉k,↑ ± 〈η̂†(τ)η̂(0)〉k,↑

)(
〈γ̂(τ)γ̂†(0)〉k+q,↓ ± 〈η̂(τ)η̂†(0)〉k+q,↓

)
=

1
4N

∫ β

0
dτ
∑
k

[
〈γ̂†(τ)γ̂(0)〉k,↑〈γ̂(τ)γ̂†(0)〉k+q,↓ ± 〈γ̂†(τ)γ̂(0)〉k,↑〈η̂(τ)η̂†(0)〉k+q,↓

±〈η̂†(τ)η̂(0)〉k,↑〈γ̂(τ)γ̂†(0)〉k+q,↓ + 〈η̂†(τ)η̂(0)〉k,↑〈η̂(τ)η̂†(0)〉k+q,↓

]
.

Here, ”+” stands for µ = ν and −” for µ 6= ν; the first term in line three is equal to zero
since the Hamiltonian (2.6) does not include spin flip processes. The antiferromagnetic
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2.2 Examination of the transversal susceptibility

and ferromagnetic susceptibilities are therefore written as

χ+−
µµ − χ+−

µν (2.13)

=
1

2N

∫ β

0
dτ
∑
k

(
〈γ̂†(τ)γ̂(0)〉k,↑〈η̂(τ)η̂†(0)〉k+q,↓ + 〈η̂†(τ)η̂(0)〉k,↑〈γ̂(τ)γ̂†(0)〉k+q,↓

)
χ+−

µµ + χ+−
µν (2.14)

=
1

2N

∫ β

0
dτ
∑
k

(
〈γ̂†(τ)γ̂(0)〉k,↑〈γ̂(τ)γ̂†(0)〉k+q,↓ + 〈η̂†(τ)η̂(0)〉k,↑〈η̂(τ)η̂†(0)〉k+q,↓

)
.

We proceed to calculate the ferromagnetic susceptibility, introducing the short notation
ĉi with i = γ, η referring to the γ̂ and η̂ operators.

χ+−
µµ + χ+−

µν =
1

2N

∫ β

0
dτ
∑
k

∑
i=γ,η

〈ĉ†i (τ)ĉi(0)〉k,↑〈ĉi(τ)ĉ†i (0)〉k+q,↓

=
1

2N

∫ β

0
dτ
∑
k

∑
i=γ,η

eτ
(
Ei(k,↑)−Ei(k+q,↓)

)
〈ĉ†i ĉi〉k,↑

(
1− 〈ĉ†i ĉi〉k+q,↓

)

=
1

2N

∑
k

∑
i=γ,η

eβ
(
Ei(k,↑)−Ei(k+q,↓)

)
− 1

Ei(k, ↑)− Ei(k + q, ↓)
〈ĉ†i ĉi〉k,↑e

βEi(k+q,↓)〈ĉ†i ĉi〉k+q,↓

=
1

2N

∑
k

∑
i=γ,η

fi(k + q, ↓)− fi(k, ↑)
Ei(k, ↑)− Ei(k + q, ↓)

q=0
=

1
2N

∑
k

∑
i=γ,η

fi(k, ↓)− fi(k, ↑)
Ei(k, ↑)− Ei(k, ↓)︸ ︷︷ ︸

B

=
1

2NB

∑
k

∑
i=γ,η

(
fi(k, ↓)− fi(k, ↑)

)
(2.15)

In line four the Fermi function fi(k) = 1
eβEi(k)+1

and Ei(k) = pσ
B
2 +Γi was introduced. The

parenthesis in the last line denote the magnetization in z-direction for both bands j = γ, η.
This expression is zero for vanishing external field and at a given field it approaches unity
for T → 0 (Fig.2.2).
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2 Mean Field Treatment

We now evaluate the antiferromagnetic susceptibility, again using the notation ĉi, i = γ, η.

χ+−
µµ − χ+−

µν =
1

2N

∫ β

0
dτ
∑
k

∑
i=γ,η
j=γ,η
i6=j

〈ĉ†i (τ)ĉi(0)〉k,↑〈ĉj(τ)ĉ†j(0)〉k+q,↓

=
1

2N

∫ β

0
dτ
∑
k

∑
i=γ,η
j=γ,η
i6=j

eτ
(
Ei(k,↑)−Ej(k+q,↓)

)
〈ĉ†i ĉi〉k,↑

(
1− 〈ĉ†j ĉj〉k+q,↓

)

=
1

2N

∑
k

∑
i=γ,η
j=γ,η
i6=j

eβ
(
Ei(k,↑)−Ej(k+q,↓)

)
− 1

Ei(k, ↑)− Ej(k + q, ↓)
〈ĉ†i ĉi〉k,↑e

βEj(k+q,↓)〈ĉ†j ĉj〉k+q,↓

=
1

2N

∑
k

∑
i=γ,η
j=γ,η
i6=j

fj(k + q, ↓)− fi(k, ↑)
Ei(k, ↑)− Ej(k + q, ↓)

q=0
=

1
2N

∑
k

∑
i=γ,η
j=γ,η
i6=j

fj(k, ↓)− fi(k, ↑)
Ei(k, ↑)− Ej(k, ↓)

. (2.16)

The denominator can be written as

Ei(k, ↑)−Ej(k, ↓) =
B

2
+Γi−

(
−B

2
+Γj

)
= B+Γi−Γj = B−2Γj = 2

(B

2
−Γj

)
,(2.17)

since Γj = −Γ,+Γ for j = γ, η. The enumerator is

fj(k, ↓)− fi(k, ↑) =
1

eβ
(
−B

2
+Γj

)
+ 1

− 1

eβ
(

B
2

+Γi

)
+ 1

(2.18)

Γi=−Γj=
e−β
(
−B

2
+Γj

)
1 + e−β

(
−B

2
+Γj

) − 1

e−β
(
−B

2
+Γj

)
+ 1

=
e−β
(
−B

2
+Γj

)
− 1

1 + e−β
(
−B

2
+Γj

) = tanh
(

β

2

(B

2
− Γj

))
.

We finally get with ξj = B
2 − Γj

χ+−
µµ − χ+−

µν =
1
2

1
N

∑
k

∑
j=γ,η

1

2
(

B
2 − Γj

) tanh
(

β

2

(B

2
− Γj

))

=
1
2

1
N

∑
k

∑
j=γ,η

1
2ξj

tanh
(

β

2

(
ξj

))
. (2.19)

Using the approximation (in the appendix) for tanh
(

β
2

(
ξj

))
,(

χ+−
µµ − χ+−

µν

)
(T ) ≈ 1

2

∑
j=γ,η

DOS(εF,j) ln
(W

2T

)
. (2.20)
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”
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B = 0.00
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χ+−
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”
(T )

Figure 2.2: Numerical evaluation of the ferromagnetic and antiferromagnetic susceptibility, for
varying fields B. The logarithmic divergence of χ+−

AFM (T ) as T → 0 is visualized by a logarithmic
fitting function f(T ) (a = 0.27, b = 0.15, c = 0.5).

Thus,
(
χ+−

µµ −χ+−
µν

)
(T ) diverges logarithmically as T goes to zero. (Fig.2.2) This behaviour

is signaled already in the Lindhard type result for the antiferromagnetic susceptibility,
(2.16). We consider the nesting condition, which is known to be

ε(k + Qnest) = −ε(k) . (2.21)

In our case antiferromagnetic order sets in at Qnest = 0 so the nesting condition now reads

Ei(k, ↑) = −Ej(k, ↓) (2.22)

which is obviously fulfilled. That is, we describe the hexagonal lattice being on the edge
of staggered antiferromagnetic order as a consequence of the nesting of its up and down
Fermisurface. The ordering is predicted to occur at a small non-zero interaction U (see
section 2.4).

2.3 Mean field decoupling

We now consider the following Hubbard model with on-site interaction and external mag-
netic field:

H = Hhopping + Hfield + HI

= −t
∑
k,σ

[(
1 + eık(a2−a1) + e−ıka1

)
â†k,σ b̂k,σ +

(
1 + e−ık(a2−a1) + eıka1

)
b̂†k,σâk,σ

]
+

B

2

∑
A,B

∑
k,σ

pσn̂σ + U
∑
A,B

∑
i

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
. (2.23)
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2 Mean Field Treatment

In order to arrive at an effective molecular field Hamiltonian we make two assumptions:

1. The biquadratic term is rewritten as:

HI = U
∑
A,B

∑
i

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
= −U

2

∑
A,B

∑
i

[
(n̂i,↑ − n̂i,↓)2 − 1

]
= −U

2

∑
A,B

∑
i

[
(2Ŝz

i,α)2 − 1
]

= −2
3
U
∑
A,B

∑
i

(
Ŝi,α

)2
+ UN . (2.24)

In this notation the spin-rotational invariance, that is the invariance of HI under
simultaneous rotation of all spins is explicitely used.

2. The transversal component mx of the magnetization ~m is assumed to be staggered,
that is alternating on the sublattices A and B: mx,A = −mx,B. Put differently, with
the index α = 0, 1 which labels the orbitals in the unit cell:

~mα =
(
mx(−1)α, 0, mz

)
(2.25)

.

Therefore we assume the magnetization ~m to have a constant component mz parallel to
the field axis and a staggered component mx(−1)α in the xy-plane perpendicular to the
field. This breaks the spin-rotational invariance. The components mx and my make up
the molecular field in this case. To approximate HI we employ the notation:

~Si,α = ~mα + (~Si,α − ~mα)

Ŝ2
i,α = 2mx(−1)α Ŝx

i,α + 2mz Ŝz
i,α −m2

x −m2
z + (~Si,α − ~mα)2︸ ︷︷ ︸

fluctuations

. (2.26)

By inserting in (2.24) one obtains the mean-field approximation, neglecting the fluctua-
tions:

HI,MF =
2
3
U
∑
k

[mx(â†k↑âk↓ + â†k↓âk↑)−mz(â
†
k↑âk↑ − â†k↓âk↓)

− mx(b̂†k↑b̂k↓ + b̂†k↓b̂k↑)−mz(b̂
†
k↑b̂k↑ − b̂†k↓b̂k↓) + 2m2

x + 2m2
z] + UN .(2.27)

The mean-field Hamiltonian HMF is bilinear in the fermion operators:

HMF =
∑
k,σ

−t(· · · ) â†k,σ b̂k,σ − t(· · · )∗ b̂†k,σâk,σ

+
B

2
µBpσ(n̂a + n̂b) +

2
3
U
[
mx(â†k,σâk,−σ − b̂†k,σ b̂k,−σ)−mz pσ(n̂a

k,σ + n̂b
k,σ)

]
+

4
3
UN(m2

x + m2
z) + UN , (2.28)
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2.3 Mean field decoupling

here (· · · ),(· · · )∗ are the hopping terms H12,H21 (2.4). Restated with the hermitian Hamil-
ton matrix

HMF =

∑
k

(
â†k,↑, b̂

†
k,↑, â

†
k,↓, b̂

†
k,↓

)


(
B
2 −

2
3Umz

)
−t(· · · ) 2

3Umx 0

−t(· · · )∗
(

B
2 −

2
3Umz

)
0 −2

3Umx

2
3Umx 0

(
−B

2 + 2
3Umz

)
−t(· · · )

0 −2
3Umx −t(· · · )∗

(
−B

2 + 2
3Umz

)




âk,↑

b̂k,↑

âk,↓

b̂k,↓


+

4
3
UN(m2

x + m2
z) + UN . (2.29)

The Hamilton matrix can be brought to diagonal form with a unitary transformation
U†U = 1. We define the quasiparticle operators

γ̂†n =
∑
m

ĉ†mU†
m,n, γ̂n =

∑
m

Un,mĉm (2.30)

and

ĉ†n =
∑
m

γ̂†mUm,n, ĉn =
∑
m

U†
n,mγ̂m . (2.31)

The operators ĉ1,2,3,4 stand for â↑, b̂↑, â↓, b̂↓. Thus

HMF =
∑
k

∑
η=1,2,3,4

Eη,k γ̂†η,kγ̂η,k +
4
3
UN(m2

x + m2
z) + UN . (2.32)

The four quasiparticle bands consist of two hole bands Eh
η,k and two particle bands Ep

η,k,

Ep,h
η,k = ±

√(
2
3
Umz −

B

2

)2

+
(

2
3
Umx

)2

+ ε2k ±
(

B − 4
3
Umz

)
εk . (2.33)

The free dispersion (2.5) is denoted as εk. In the ground state we assume that the hole
bands are completely filled and the particle bands completely empty:

Egs =
∑
k

(E1,k + E2,k) +
4
3
UN(m2

x + m2
z) + UN (2.34)

= −
∑
k

√(
2
3
Umz −

B

2

)2

+
(

2
3
Umx

)2

+ ε2k +
(

B − 4
3
Umz

)
εk

+

√(
2
3
Umz −

B

2

)2

+
(

2
3
Umx

)2

+ ε2k −
(

B − 4
3
Umz

)
εk +

4
3
UN(m2

x + m2
z) + UN .
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2 Mean Field Treatment

To determine the parameters mz and mx we understand them as variational parameters
which minimize Egs(mx,mz). With this approach one arrives at the mean field equations
(gap equations)

∂Egs (mx,mz)
∂mx

= 0

∂Egs (mx,mz)
∂mz

= 0 , (2.35)

or

mx = − 1
N

∑
k

(
1

E1,k
+

1
E2,k

)
1
6
Umx

mz = − 1
N

∑
k

(
1

E1,k
+

1
E2,k

)(
1
6
Umz −

1
8
B

)
−
(

1
E1,k

− 1
E2,k

)
εk
4

. (2.36)

They may be solved numerically.

2.4 Meanfield phase transition

The reason to study many-particle systems is the search for correlation effects. By defini-
tion these are effects which cannot be described within an independent electron approx-
imation [2]. Having introduced the explicit form (2.25) of the molecular field we already
anticipated the spontaneous symmetry breaking. Therefore we know that the system will
develop Neél order beyond a critical U (for H = 0) and canted antiferromagetic order
(for H > 0)4. Based on this qualitative considerations we expect a phase transition from
paramagnetic to antiferromagnetic state at Uc(H) which coincidences with a semi metal-
insulator transition. In the context of the mean field approximation we call the insulating
phase an antiferromagnetic Slater insulator. The hexagonal lattice is bipartite, that is
it consists of two interpenetrating triangular lattices and in the antiferromagnetic phase
an alternating order in the xy-plane is realized. The spin density wave is self-stabilizing
and its wave vector Q is commensurate with the lattice. Since we describe the lattice
according to a basis with two orbitals we get Q = (0, 0). Naturally this self-consistent
band picture which predicts the insulating state as a consequence of electron exchange is
too simple to explain a real Mott-Heisenberg transition. This would require a theory for
correlated electrons.
The self-consistent solutions for mz and mx as a function of H and U , as well as the total
magnetization m =

√
m2

x + m2
z are shown in Fig.(2.4).

Based on the mean field approach we observe a critical interaction strength of Uc
∼= 4.

For U > Uc there exists already at H = 0 a finite transversal magnetization that is a gap
4Following conventional notation, we denote the magnetic field with the paramter H instead of B from

now on, since it cannot be mistaken with the Hamiltonian anymore.
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2.4 Meanfield phase transition

(a) mx (b) mz

Figure 2.3: Components of the magnetization as a function of H and U , resulting from numerical
solution of the mean field equations.

Figure 2.4: Total magnetization m =
√

m2
x + m2

z.
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2 Mean Field Treatment

appears in the spectrum (see section 2.5), while mz does not exist for H = 0 as expected.
The increase of mx(H) with growing external field when U < Uc can be traced to the
nesting of the Fermi surface. The Fermi surface is point like for the free systems and
has circular shape for H > 0 and H = 0, U > Uc. As already mentioned above nesting
happens in our case at Qnest = (0, 0) that is the nesting condition ε(k + Qnest) = −ε(k)
is altered to

Ei(k, ↑) = −Ej(k, ↓) . (2.37)

Figure 2.5: Visualization of the nesting of up and down spin Fermi surface. In case of H = 0
(free system, left) the up and down bands collapse onto each other, whereas for H > 0 the bands
are shifted by virtue of the magnetic field (right).

Thus, nesting connects the up-spin Fermi line with the down-spin Fermi line. Without
a magnetic field, in the honeycomb lattice nesting is intrinsically extremely weak com-
pared to the perfect nesting in the square lattice [17]. The picture is consistent with the
logarithmic divergence of χAFM (T ). This leads to a spin-density wave with alternating
spins in the two orbitals at low magnetic fields. The behaviour of mx is governed by two
competing processes each of which seeks to minimize the free energy of the system. The
magnetic field tries to align the spins and therefore avoids canted electron spins. On the
other side canted antiferromagnetism opens up a energy gap in the spectrum and thereby
lowers the energy. When the external field is big enough the lattice is totally polarized
that is transversal magnetization disappears for the benefit of vertical magnetization.

2.5 Spectral function

All information about the single particle excitations like the one particle density of states
can be derived from the one particle Green function and the spectral density. The Green
function Gx,y(t1, t2) is the amplitude for the propagation of an electron or a one particle

18



2.5 Spectral function

excitation from a state, characterized by the quantum number x and time t1 to the state
y at time t2. Thermal (imaginary time) and zero temperature (real time) Green functions
may be transformed into each other by considering a more general Green function in
the complex t1 − t2 plane. The physical relevant entities, which depend on real time and
frequency, may be obtained upon analytic continuation [1]. The Matsubara Green function
in imaginary time is defined as (with the time ordering operator Tτ )

Gx,y(τ1, τ2) = −〈Tτ [ĉx(τ1)ĉ†y(τ2)]〉 = 〈ĉx(τ1)ĉ†y(τ2)〉 for τ1 > τ2 . (2.38)

With (2.30) and (2.31)the one particle Green function reads

Gm,n(τ) = −〈ĉm(τ)ĉ†n(0)〉

= −
∑
m′,n′

U†
m,m′Un′,n〈γ̂m′(τ)γ̂†n′(0)〉

= −
∑
m′,n′

U†
m,m′Un′,n〈γ̂m′(τ)γ̂†n′(0)〉δm′,n′

= −
∑
m′

U†
m,m′Um′,n〈γ̂m′(τ)γ̂†m′(0)〉 . (2.39)

The frequency dependent Matsubara Green function is

Gm,n(ωs) =
∫ β

0
dτG(τ)eıωsτ

= −
∫ β

0
dτ
∑
m′

U†
m,m′Um′,n〈γ̂m′(τ)γ̂†m′(0)〉eıωsτ

= −
∫ β

0
dτ
∑
m′

U†
m,m′Um′,n〈γ̂m′γ̂

†
m′〉e(ıωs−Em′)τ

= −
∑
m′

U†
m,m′Um′,n〈γ̂m′γ̂

†
m′〉

e(ıωs−Em′)β − 1
ıωs − Em′

= −
∑
m′

U†
m,m′Um′,n

eβEm′

eβEm′ + 1
e(ıωs−Em′)β − 1

ıωs − Em′

= −
∑
m′

U†
m,m′Um′,n

eıωsβ − eβEm′

(eβEm′ + 1)(ıωs − Em′)

=
∑
m′

U†
m,m′Um′,n

1
ıωs − Em′

. (2.40)

To go from line six to line seven, ωs = (2s+)π
β for Fermions was used.

In a many particle system the spectral function A(k, ω) describes the energy resolution of
a particle in a given quantum state k or complementary at a given energy the resolution
of the quantum state. To put it more distinctly, we inject in a N -particle system one
additional (quasi-)particle with quantum number k and can read from the shape of the
spectral function at k the lifetime of this excitation. Free particles have an infinite lifetime,
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2 Mean Field Treatment

that is the spectral function has the form A(k, ω) ∝ δ(w − E(k)) with the eigenvalues
E(k) of the free Hamiltonian. In the case of non-interacting electrons an excitation of
energy ω can be only created in the state k with energy E(k) = ω. Interactions like
electron-electrons interactions or electron-phonon interactions broaden the spectral profile
and cause a redistribution of spectral weight. The mean field Hamiltonian was solved by
introducing quasiparticle operators, that is the hybridization of ĉ↑,↓- und d̂↑,↓-electrons
which enter the quasiparticle with a k-dependent weight. This allows us to write down
the single particle spectral function. The spectral function is defined via the imaginary
part of the analytic continuation of the Matsubara Green function:

Am,n(k, ω) = − 1
π

Im Gm,n(ωs → ω + ı0+) (2.41)

with

Gm,n(ω) =
∑
m′

U†
m,m′Um′,n

1
ω − Em′ + ı0+

. (2.42)

Using the Dirac identity Im 1
x−x0+ı0+ = −πδ(x− x0) it follows that

Am,n(k, ω) =
∑
m′

U†
m,m′Um′,nδ(ω − Em′) . (2.43)

The poles of the Green function thus enter the spectral function with a spectral weight.
By virtue of the unitarity of U we have∑

m′
U†

m,m′Um′,n = 1 , (2.44)

and therefore∫ +∞

−∞
dωA(k, ω) = 1 . (2.45)

Hence the spectral weight is conserved. Given the spectral function in the first Brillouin
zone, the one particle density of states follows as

ρ(ω) =
1
N

∑
k

A(k, ω) . (2.46)

To plot the spectral function as a function of k and ω with its corresponding weight, the
delta distributions were numerically implemented as Lorentz curves with small but finite
width ∆L. A↓,↓(k, ω) and the concomitant density of states is shown for the different
phases of the mean field ansatz (Fig.2.5, Fig.2.5). The evolution of the Fermi surface is
plotted in Fig(2.6).
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Figure 2.6: Evolution of the Fermi surface around the Dirac point Kx,Ky. The Fermi point in
case of the free systems acquires circular shape when the bands are shifted due to the field. As
soon as the interaction is turned on (here H = 0.5, U = 3) the Fermi line vanishes in agreement
with the opening of the gap. This is observed when the artificially introduced parameter for the
width of the Lorentzian ∆L is made small enough (bottom right).
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Figure 2.7: Single particle spectral function A↓,↓(k, ω) along the path of high symmetry Γ-K-M -Γ
of the first Brillouin zone and the concomitant density of states, for H = 0. The density of states
can be linearized in the low energy limit around the Dirac points. The peaks signal van Hove
singularities which occur as the slope of E(k) goes to zero. In case of U = Uc ≈ 4, the gap opens
up.
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Figure 2.8: Single particle spectral function A↓,↓(k, ω) and (spin down) density of states, at
U = 3.5 fixed. From top to bottom we pass through the maximum of the gap (the transversal
magnetization mx) which occurs around H = 1.5. For H > 1.5 the gap gets smaller again as total
polarization begins to set in. 23
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3 Functional Integral Formulation

The formulation of the partition function as a functional integral is the starting point
of the mathematical treatment of auxilliary field methods. In the present chapter it will
be argued how the partition function may be rewritten as an integral over all possible
configurations of a new variable, the auxilliary field.
The electron-electron interaction enters the Hamilton operator as a term with four
fermionic creation and annihilation operators, that is the term is of quartic order in the
operators. Introducing a field variable serves to reduce the interaction term to bilinear
form, as it is already the case with the kinetic electron-hopping term. In the framework of
this formulation the original electron-electron interaction is restated as an interaction of
one-body operators with a (bosonic as it will turn out) external field. This mathematical
transformation is accomplished with a Hubbard-Stratonovich decomposition.
Writing the partition function in a path integral representation is s fundamental concept
of many quantum Monte Carlo (QMC) methods. This allows to map a d-dimensional
quantum system to a d + 1-dimensional classical system. The additional dimension is
called imaginary time in analogy to the time evolution in quantum mechanics. The reason
to discretize a time or temperature interval in infinitesimal steps lies in the general an-
ticommunitativity of the summands in the Hamilton operator. Each subinterval may be
calculated neglecting this decisive property of quantum mechanics. However, the resulting
systematic error vanishes in the infinitesimal limit and can also be controlled at finite step
width, as it is the case in the numerical simulation.

3.1 The partition function as a path integral over imaginary time

The path-integral representation of quantum mechanics can readily be applied to many
particle systems as opposed to the standard formulation of quantum mechanics in terms
of wave functions and the Schrödinger equation. In the Schrödinger picture of quantum
mechanics, the amplitude for a particle to go from the coordinates (xi, ti) to (xf , tf )
is given by the time evolution operator U(tf , ti) = e−iH(tf−ti) and its matrix elements
〈xf |e−iH(tf−ti)|xi〉. In the path integral picture we want to reformulate the time evolution
operator by evoking the superposition principle of quantum mechanics: in principle the
transition xi → xf can be realized with every function or path x(t) that begins at xi and
ends at xf . Each path gives one possible transition amplitude which may be written in
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3 Functional Integral Formulation

terms of a phase and the total amplitude is the coherent superposition of all contributions
[8]:

〈xf |e−
i
h̄

H(tf−ti)|xi〉 =
∑
path

e
i
h̄
·phase(path) =

∫
D[x(t)]e

i
h̄
·phase =

∫ xf ,tf

xi,ti

D[x(t)]e
i
h̄

S[x(t)](3.1)

In the last step the Lagrangian action S =
∫

Ldt was introduced. Identifying the phase
with the action S[x(t)] can be easily understood via the stationary phase approximation
in the classical limit: the classical path should be stationary and fulfills the principle of
least action [8].
The analogy between the Schrödinger time evolution operator and the density operator
e−βH of statistical mechanics allows for the development of a path integral representation
of the partition function Z. The partition function of the canonical ensemble is

Z = Tr e−βH =
∫

dx〈x|e−βH |x〉 . (3.2)

and can be interpreted as the integral over the diagonal components of the evolution
operator U(τf , τi) = e−(τf−τi)H which operates in imaginary or Euclidean time τ . To
evaluate (3.2) for a Hamiltonian with multiple summands, H =

∑
i Hi we make use of the

Trotter formula [36]

e−βH = lim
m→∞

m∏
l=1

(∏
i

e−∆τHi

)
(3.3)

with m∆τ = β and
∏

i e
−∆τHi = e−∆τH + O(∆τ2). What we gain is twofold: first,we

splitted the evolution from 0 → β in m small pieces of length ∆τ , the time slices. Chained
together the matrix elements of all time slices give the total matrix element. Secondly,
on each time slice we are able to compute the corresponding matrix element since the
exponentiated Hamiltonian is simplified in terms of a product of exponentials. The price
we pay is an error of the order ∆τ2 when we are not able to let m go to infinity or ∆τ to
zero, respectively. The partition function is therefore

Zexact =
∫

dx U(τi, τf )|xi=xf=x; τi=0,τf=β

=
∫

dx
(

lim
m→∞

〈xf |(e−∆τH)m|xi〉
)
|xi=xf=x; τi=0,τf=β

=
∫

dx lim
m→∞

〈xf |
(∏

i

e−∆τHi

)m
|xi〉|xi=xf=x; τi=0,τf=β

=
∫

dx

∫ xf=x,τf=β

xi=x,τi=0
D[x(τ)]e−eS[x(τ)] . (3.4)

In the last line the Euclidean action S̃[x(t)] was introduced [7]. Using this so-called first
order Trotter decomposition (3.3), it has been shown in case of large but finite m that
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3.2 Introduction of the auxiliary field

for the partition function and the expectation value of Hermitian operators the correction
term linear in ∆τ vanishes. As pointed out in [36] this is true if all relevant operators are
simultaneously real representable.
In practice we have to deal with a Hamiltonian with two contributions, H = HT + HI .
The partition function to evaluate, respectively to sample with Monte-Carlo methods is
then

Z = Tr[e−βH ] = Tr
[(

e−∆τHI e−∆τHT

)m]
+O(∆τ2) . (3.5)

From now on we understand the partition function to be correct except for an error of the
order O(∆τ2) and omit the discretization error in the notation.

3.2 Introduction of the auxiliary field

To evaluate the potential part of the partition function which was isolated by means of the
Trotter decomposition on every single time slice the two-body term has to be rewritten
in one-body notation. This is possible by introducing an auxiliary variable si called the
auxiliary field. We consider the generic Hamilton operator of a fermionic system,

H = HT + HI =
∑
i,j

c†iTi,jcj +
1
2

∑
i,j,k,l

Vi,j,k,lc
†
ickc

†
jcl . (3.6)

The matrices T and V are generalized hopping and interaction matrices. In many cases
the restriction is hopping processes to nearest neighbours only, spin conservation and to
the on-site interaction. Applying the Trotter decomposition the operator on one single
time slice is

lim
∆τ→0

e−∆τH = lim
∆τ→0

(
e−∆τHI e−∆τHT

)
= lim

∆τ→0

(
e−

∆τ
2

P
i,j,k,l Vi,j,k,lc

†
i ckc†jcl︸ ︷︷ ︸

two-body operator

e−∆τ
P

i,j c†i Ti,jcj

)
. (3.7)

Now we concentrate on the two-body operator which may be rewritten using a Hubbard-
Stratonovich (HS) transformation. Generally spoken, this transformation allows for the
mapping of an interacting fermion problem to a system of non interacting fermions coupled
to a fluctuating external field [37]. The HS transformation is based on the identity for
multidimensional integral over the real variables Ai,j ,Ji, si

e
1
2

P
i,j JiAi,jJj =

√
det[A−1]

∫
ds(i)e−

1
2
siA

−1
i,j sj+siJi , (3.8)

with the measure ds(i) =
∏

i
dsi√
2π

.1 This identity is an extension of the familiar Gaussian
integral formula [1]. We are allowed to interprete (3.8) as operator identity, using the one

1The matrix A is assumed to be real, symmetric and positive definite.
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body operators (c†c)m, (c†c)n. Here a short notation for the indices, m ≡ (i, k), n ≡ (j, l),
is introduced. The interaction term then reads

e−
∆τ
2

P
m,n(c†c)mVm,n(c†c)n

=
√

det[∆τ(Vm,n)−1]
∫

ds(m) e
∆τ
2

P
m,n sm(Vm,n)−1sn−∆τ

P
m sm(c†c)m . (3.9)

We succeeded in writing the interaction part of the imaginary time evolution operators as
an integral over one-body operators. This is done at the expense of a new variable, the
auxilliary field s(i). Since the HS-transformation is applied independently on every time
slice, the auxilliary field is a function of lattice site and time slice index, s = s(i, τ).

3.3 Discrete Hubbard-Stratonovich transformation

The HS is not singular and the efficiency of an algorithm relies to great degree on the chosen
transformation. In principle the partition function based on (3.9) may be calculated with
Monte Carlo methods. However it is more efficient to carry out a summation over discrete
field values than to integrate over a continuous field since the phase space over which the
integral has to be performed is much smaller in the former formulation than it is in the
Gaussian one [37]. The notation in this section and in the following section is based on
[5]. Initially we consider the Hubbard interaction

HI = U(c†↑c↑ −
1
2
)(c†↓c↓ −

1
2
) = −U

2
(n↑ − n↓)2 +

U

4
(3.10)

for a single lattice site and time slice and construct the general case of N sites and β/∆τ

time slices later. The Hilbert space on a single site is four dimensional, H = H0 ⊗H1 ⊗H2,
and is spanned by the four states, H = {|0〉, | ↑〉, | ↓〉, | ↑↓〉}. Therefore

e−∆τHI = γ
∑

s=±1

eαs(n↑−n↓) (3.11)

may be a possible HS transformation over the field s with values ±1 if we succeed in
finding compatible values for α and γ. Applying the state kets |0〉,| ↑〉,| ↓〉,| ↑↓〉 on (3.11)
one ends up with the following equations

e−∆τHI |0〉 = e−
∆τU

4 |0〉 = 2γ|0〉

e−∆τHI | ↑〉 = e+∆τU
4 | ↑〉 = γ(eα + e−α)| ↑〉 = 2γcosh(α)| ↑〉

e−∆τHI | ↓〉 = e+∆τU
4 | ↓〉 = γ(eα + e−α)| ↓〉 = 2γcosh(α)| ↓〉

e−∆τHI | ↑↓〉 = e−
∆τU

4 | ↑↓〉 = 2γ| ↑↓〉 (3.12)

That is, the discrete HS transformation (3.11) is valid provided that γ and α take the
values

γ =
e−

∆τU
4

2
, cosh(α) = e

∆τU
2 . (3.13)
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3.4 Formulation of the partition function

Since the HS variable s couples to the z-component of the magnetization mz = (n↑−n↓) the
SU(2) spin symmetry is broken for each field and is only reestablished after summing over
all fields. This symmetry breaking may be circumvented using complex HS transformations
which couple to the electron density. This is discussed in [5].
The expression (3.11) can easily generalized to a N -particle system which is in our case a
lattice with N sites:

e−∆τU
P

i(ni,↑− 1
2
)(ni,↓− 1

2
) = C

∑
s1,s2,··· ,sN=±1

eα
P

i si(ni,↑−ni,↓) , (3.14)

with C = e
−∆τUN

4

2N . To conclude, the on-site interaction may be replaced by a fluctuating
field composed of Ising variables si = ± which couples to the magnetic field.

3.4 Formulation of the partition function

Summarizing the preceding three sections we have established the necessary mathematics
to write down the partition function as it is needed for the Monte Carlo method. Before
proceeding we introduce a simplified vector notation. The hopping term is

HT = −t
∑
〈i,j〉,σ

c†i,σcj,σ = −t
∑

〈i,j〉,σ,σ′

c†i,σcj,σ′δσ,σ′ =
∑
x,y

c†xTx,ycy ≡ c†Tc , (3.15)

with x = (i, σ). The HS transformation of the interaction can be written similarly as

α
∑

i

si(ni,↑ − ni,↓) = α
∑
i,σ

sipσc†i,σci,σ (3.16)

=
∑

i,σ,i′,σ′
αsipσδi,i′δσ,σ′c

†
i,σci′,σ′ =

∑
x,y

c†xV (s)x,ycy ≡ c†Vc .
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3 Functional Integral Formulation

Now we interpret the Ising field on time slice n as a N -dimensional vector sn the elements
of which take the values ±1. Finally the grand canonical partition function reads

Z = Tr

[
e
−β

(
H−µN

)]
= Tr

[(
e−∆τHI e−∆τHT

)m]
+ O(∆τ2)

= Tr

C
∑

s1,s2,··· ,sN=±1

eα
P

i si(ni,↑−ni,↓)e−∆τ(−t
P

〈i,j〉,σ c†i,σcj,σ)

m
= Cm Tr

[
m∏

n=1

∑
sn

ec†V(sn)ce−∆τc†Tc

]

= Cm
∑

s1,s2,··· ,sn

Tr

[
m∏

n=1

ec†V(sn)ce−∆τc†Tc

]
︸ ︷︷ ︸

Us(β,0)

= Cm
∑

s1,s2,··· ,sm

Tr [Us(β, 0)] (3.17)

In line two, the chemical potential can be absorbed in a redefinition of HT . The partition
function now is the trace over a the sum of propagators Us(β, 0) in imaginary time. Using
the following relation2 for the bilinear operators c†A1c, · · · , c†Anc,

Tr[ec†A1cec†A2c · · · ec†Anc] = det[1 + eA1eA2 · · · eAn ] , (3.18)

the trace (3.17) can be evaluated explicitly by writing it as determinant of matrices. This
technique is known as integrating out the fermionic degrees of freedom. With the matrix
representation of the propagator,

Bs(β, 0) =
m∏

n=1

eV(sn)e−∆τT , (3.19)

the final version of (3.17) is (with m∆τ = β)

Z = Cm
∑

s1,s2,··· ,sm

det[1 + Bs(β, 0)] . (3.20)

This is the general finite temperature result which is the basis of the finite temperature
QMC (FTQMC) algorithm. This method relies on the grand canonical ensemble. However
if one is soley interested in ground state results it is more efficient to use a canonical
approach which is subject of Chapter 4.

2A detailed proof may be found in [5]
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4 The Projector QMC Method

Within the framework of auxilliary field quantum Monte Carlo methods, simulations can
be realized for finite temperatures or at zero temperature. In the latter case, the algorithm
approximates the (unknown) ground state wave function Ψ0 by repeatedly projecting of
a trial wave function ΨT and therefore is called projector quantum Monte Carlo (PQMC)
algorithm. The trial wave function is chosen to be a Slater determinant.
In this chapter the basic principles of the PQMC algorithm are explained. The essen-
tial building block is the equal time Green function, which determines the Monte Carlo
sampling and also makes possible the calculation of arbitrary static observables via Wick’s
theorem. Subsequently, it will be shown how both equal time and imaginary time displaced
Green functions can be implemented into the algorithm to give reliable and numerically
stable results.

4.1 The trial wave function

As it has been shown in the preceding chapter the partition function and thus the expec-
tation values may be obtained based on the knowledge of all field variables. To reduce
complexity one will later on only use the most probable configurations of field variables.
This is accomplished by the actual Monte Carlo part of the algorithm (see chapter 5).
In the following we argue that the trial wave function |ΨT 〉 can be written as a product of
one particle states. We adopt the notation of [5]. In anticipation of a future result (4.9)
one has

〈Ψ0|A|Ψ0〉
〈Ψ0|Ψ0〉

= lim
θ→∞

〈ΨT |e−θHAe−θH |ΨT 〉
〈ΨT |e−2θH |ΨT 〉

= lim
θ→∞

∑
s

PsAs + O(∆τ2) (4.1)

Thus the expectation value of A is given by the sum over all HS-fields with a suitable nor-
malized weight Ps. The second equation in (4.1) is obtained by assuming a non degenerate
ground state |Ψ0〉, with 〈ΨT |Ψ0〉 6= 0 and H|n〉 = En|n〉:

lim
θ→∞

〈ΨT |e−θHAe−θH |ΨT 〉
〈ΨT |e−2θH |ΨT 〉

= lim
θ→∞

∑
n,m〈ΨT |n〉〈n|e−θHAe−θH |m〉〈m|ΨT 〉∑

n〈ΨT |e−2θH |n〉〈n|ΨT 〉

= lim
θ→∞

∑
n,m〈ΨT |n〉〈m|ΨT 〉〈n|A|m〉e−θ(En+Em)∑

n |〈ΨT |n〉|2e−2θEn

=
〈Ψ0|A|Ψ0〉
〈Ψ0|Ψ0〉

(4.2)
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4 The Projector QMC Method

If one inserts the HS-formulation of the Hamilton operator, (4.2) describes the propagation
(in imaginary time) of a trial wave function |ΨT 〉 in a system of non-interacting fermions
under the influence of an external field. The total wave function of non interacting particles
can be formed with single particle wave functions.
The many body state of NP particles which can occupy NS single particle states (NP ≤
NS) is given by a Slater determinant. The following notation is adopted from [5]. We
consider the one-particle Hamiltonian H0 which is diagonalized by virtue of the unitarian
transformation U , U †hU = diag(λ1 · · ·λNS

).

H0 =
NS∑
x,y

c†xhx,ycy =
NS∑
x,y

c†xUU †hx,yUU †cy =
NS∑
x

λx,xγ†xγx . (4.3)

A many body state |Ψ〉 with NP -particle occupying the single particle states α1 · · ·αNP
is

therefore written as

|Ψ〉 =
NP∏
n=1

γ†αn
|0〉 =

NP∏
n=1

(∑
x

c†xUx,αn

)
|0〉 =

NP∏
n=1

(
c†P

)
n
|0〉 . (4.4)

The NSxNP -matrix P thus completely determines the many body state. The Slater
determinant stays a Slater determinant under propagation with a one particle propagator,

ec†Tc
NP∏
n=1

(
c†P

)
n
|0〉 =

NP∏
n=1

(
c†eTP

)
n
|0〉 . (4.5)

This is true in the case of T (anti-)hermitian. Furthermore the overlap of two Slater
determinants |Ψ〉 and |Ψ̃〉 evaluates to

〈Ψ|Ψ̃〉 = det[P†P̃] . (4.6)

A detailed proof of the above statements is presented in [5].
To sum up, in the PQMC algorithm the matrix P which determines the trial wave function
is propagated:

|ΨT 〉 =
NP∏
n=1

(
c†P

)
n
|0〉 . (4.7)

The scalar product of |ΨT 〉 and the propagated wave function e−2θH |ΨT 〉 can be expressed
as a sum over HS fields with the definition of the overlap of two Slater determinants (4.6)
and the propagator B(2θ, 0) (3.19)

〈ΨT |e−2θH |ΨT 〉 = Cm
∑

s1,s2,··· ,sm

det[P†Bs(2θ, 0)P] . (4.8)

The projection parameter or ”temperature” θ and the disrete time-step ∆τ define the
number of trotter slices which are used for the propagation over the interval [0, 2θ]. The
limit to θ → ∞ may be reach upon extrapolation but converging behaviour is already
observed for relatively small values of θ (Fig.4.1).
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4.2 Observables in the PQMC algorithm
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Figure 4.1: Convergence of PQMC Data for the transversal magnetization 1
N

√
〈S+S−〉 as a

function of the projection parameter θ and temperature ∆τ (lattice size 12 × 12, magnetization
mz = 1/4). For subsequent simulation the parameters θ = 20 and ∆τ = 0.1 were used.

4.2 Observables in the PQMC algorithm

The expectation value of an observable for a given projection parameter θ is

〈ΨT |e−θHAe−θH |ΨT 〉
〈ΨT |e−2θH |ΨT 〉

=
∑

s〈ΨT |Us(2θ, θ)AUs(θ, 0)|ΨT 〉∑
s〈ΨT |Us(2θ, 0)|ΨT 〉

(4.9)

=
∑

s〈ΨT |Us(2θ, θ)AUs(θ, 0)|ΨT 〉∑
s〈ΨT |Us(2θ, 0)|ΨT 〉

〈ΨT |e−2θH |ΨT 〉
〈ΨT |e−2θH |ΨT 〉

=
∑

s〈ΨT |Us(2θ, θ)AUs(θ, 0)|ΨT 〉∑
s〈ΨT |Us(2θ, 0)|ΨT 〉

det[P†Bs(2θ, 0)P]
〈ΨT |Us(2θ, 0)|ΨT 〉

=
det[P†Bs(2θ, 0)P]∑
s〈ΨT |Us(2θ, 0)|ΨT 〉

∑
s〈ΨT |Us(2θ, θ)AUs(θ, 0)|ΨT 〉

〈ΨT |Us(2θ, 0)|ΨT 〉

=
∑
s

det[P†Bs(2θ, 0)P]∑
s〈ΨT |Us(2θ, 0)|ΨT 〉︸ ︷︷ ︸

Ps

〈ΨT |Us(2θ, θ)AUs(θ, 0)|ΨT 〉
〈ΨT |Us(2θ, 0)|ΨT 〉︸ ︷︷ ︸

〈A〉s

=
∑
s

Ps 〈A〉s.

4.2.1 Equal time Green function G(τ)

Based on the formulation with P-matrices and the propagator Bs correlation functions can
be calculated for a fixed field s. Additionally one can demonstrate that every many-body
Green function 〈c†xncyn · · · c

†
x2cy2c

†
x1cy1〉 can be split in a sum of one particle Green functions

33



4 The Projector QMC Method

〈c†xcy〉. In other words, Wick’s theorem is applicable. In the following the equal time Green
function is calculated, the evaluation of multi-point correlation functions follows the same
logic and is essentially done by calculating cumulants and using the cyclic properties of
the trace. This can e.g. be found in [5].
The equal time Green function Gs(θ)x,y at x, y and ”time” θ is defined as

Gs(θ)x,y = 〈cx(θ)c†y(θ)〉 ≡ 〈cxc†y〉 . (4.10)

Using the matrix notation [6] Ax,y
x1,y1

= δx1,xδy1,y this becomes:

(1−Gs(θ)) = 〈c†xcy〉 = 〈c†Ax,y
x1,y1

c〉 . (4.11)

One also needs

∂

∂λ
ln〈ΨT |U1e

λOU2|ΨT 〉|λ=0 =
〈ΨT |U1 O U2|ΨT 〉
〈ΨT |U1U2|ΨT 〉

. (4.12)

Putting all things together, (4.11) finally reads

〈c†xcy〉s =
∂

∂λ
ln〈ΨT |Us(2θ, θ)eλc†Ax,y

x1,y1
cUs(θ, 0)|ΨT 〉|λ=0

=
∂

∂λ
ln det

[
P†Bs(2θ, θ)eλc†Ax,y

x1,y1
cBs(θ, 0)P

]
λ=0

=
∂

∂λ
Tr ln

[
P†Bs(2θ, θ)eλc†Ax,y

x1,y1
cBs(θ, 0)P

]
λ=0

detA=eTr ln A

= Tr

P†Bs(2θ, θ)Ax,y
x1,y1

Bs(θ, 0)P

P† Bs(2θ, θ)Bs(θ, 0)︸ ︷︷ ︸
Bs(2θ,0)

P


=

(
Bs(θ, 0)P(P†Bs(2θ, 0)P)−1P†Bs(2θ, θ)

)
x,y

= B>(B<B>)−1B<

= (1−Gs(θ))x,y . (4.13)

In line five the cyclic invariance of the trace was used and then the trace was computed
explicitly. In line six the following abbreviations were established:

B> = Bs(θ, 0)P, B< = P†Bs(2θ, θ) . (4.14)

With the same arguments one also obtains

〈c†x2
cy2c

†
x1

cy1〉s = 〈〈c†x2
cy2c

†
x1

cy1〉〉s + 〈c†x2
cy2〉s〈c†x1

cy1〉s
= 〈c†x2

cy1〉s〈c†x1
cy1〉s + 〈c†x2

cy2〉s〈cy2c
†
x1
〉s . (4.15)

34



4.2 Observables in the PQMC algorithm

4.2.2 Imaginary time displaced Green function G(τ ′, τ)

In case of τ1 ≥ τ2 the time displaced Green function at x, y is

Gs(τ1, τ2)x,y = 〈cx(τ1)c†y(τ2)〉s . (4.16)

One may depict the time displaced Green function like this: a particle is created at time
τ2 with c†y(τ2), it propagates during the period τ1 − τ2 and is annihilated at a later time
τ1. In order to write down the Green function for a fixed HS field we use the general
expression (4.9):

Gs(τ1, τ2)x,y =
〈ΨT |Us(2θ, τ1)ĉxUs(τ1, τ2)ĉ

†
yUs(τ2, 0)|ΨT 〉

〈ΨT |Us(2θ, 0)|ΨT 〉

=
〈ΨT |

Us(2θ,τ2)︷ ︸︸ ︷
Us(2θ, τ1)Us(τ1, τ2)

(Bs(τ1,τ2)c)x︷ ︸︸ ︷
(Us(τ1, τ2))−1ĉxUs(τ1, τ2) ĉ†yUs(τ2, 0)|ΨT 〉
〈ΨT |Us(2θ, 0)|ΨT 〉

=
〈ΨT |Us(2θ, τ2)(Bs(τ1, τ2)c)xĉ†yUs(τ2, 0)|ΨT 〉

〈ΨT |Us(2θ, 0)|ΨT 〉

= Bs(τ1, τ2)x,z
〈ΨT |Us(2θ, τ2)ĉz ĉ

†
yUs(τ2, 0)|ΨT 〉

〈ΨT |Us(2θ, 0)|ΨT 〉
= [Bs(τ1, τ2) Gs(τ2)]x,y . (4.17)

The step from line two to line three which introduces the relation

(Us(τ1, τ2))−1cxUs(τ1, τ2) = (Bs(τ1, τ2)c)x (4.18)

is made plausible with the following arguments:

1. U is basically composed of one-body operators of the form e−τc†Mc (M shall be an
arbitrary matrix) which are applied successively.

2. To evaluate (Us(τ1, τ2))−1cxUs(τ1, τ2) we consider the innermost element, i.e.
eτc†Mccxe−τc†Mc = cx(τ) and then apply the operators of the remaining time slices
from the left and right side, respectively.

3. The innermost element fulfills ∂
∂τ cx(τ) = −

∑
z Mx,zcz(τ) and therefore

cx(τ) = (e−M)x, since

∂

∂τ
cx(τ) =

∂

∂τ
eτc†Mccxe−τc†Mc = eτc†Mc[c†Mc, cx]e−τc†Mc . (4.19)
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4 The Projector QMC Method

After evaluating the commutator

[c†Mc, cx] =
∑
i,j

Mi,j [c
†
icj , cx]

=
∑
i,j

Mi,j(−c†icxcj − c†icjcx)

=
∑
i,j

Mi,j(−(δx,i − cxc†i )cj − c†icjcx)

= −
∑
i,j

Mi,jδx,icj = −
∑

j

Mx,jcj

one obtains

∂

∂τ
cx(τ) = eτc†Mc(−

∑
j

Mx,jcj)e−τc†Mc

= −
∑

j

Mx,jcj(τ). (4.20)

Therefore (4.18) is justified. Since the propagator Bs(τ1, τ2) is a matrix one can pull
it out of the sum, which is how we go from line four to line five in (4.17).

For time displaced Green function a Wick theorem equally holds, a proof may found
in [6]. In conclusion, the time displaced Green function is obtained upon propagation
that is matrix multiplication from the left on the equal time Green function. Although
mathematically exact, this kind of propagation cannot be implemented readily into the
algorithm since instabilities will develop at large times that is after many multiplications.
A central task is therefore to find a efficient method to calculate time displaced Green
functions.

4.2.3 Efficient calculation of G(τ ′, τ)

The knowledge of the imaginary-time displaced Green function for different parameters of
the lattice system allows to extract valuable information about spin and charge gaps or
quasiparticle weights. Dynamical properties like the single particle spectral function can
also be obtained after analytic continuation to real time.
For the free system, G(τ, 0) can be calculated analytically, following Chapter 2,

Gk(τ, 0) = 〈ĉk(τ)ĉ†k(0)〉

=
1
2

(
〈γ̂k(τ)γ̂†k(0)〉+ 〈η̂k(τ)η̂†k(0)〉

)
=

1
2

(
e−τEγ(k)〈γ̂kγ̂†k〉+ e−τEη(k)〈η̂kη̂†k〉

)
T→0=

1
2
e−τΓ(k) . (4.21)
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4.2 Observables in the PQMC algorithm

The last line follows with Eγ,η(k) = ∓Γ(k). In the general case the imaginary time
displaced Green function is a superposition of many exponential functions of different
frequencies, corresponding to the excitation energies of the (N + 1)- particle system with
respect to the N -particle ground state |ΨN

0 〉:

Gk(τ, 0) τ>0= 〈ĉ(τ)ĉ†(0)〉

= 〈ΨN
0 |eτH ĉe−τH ĉ†|ΨN

0 〉

=
∑

ΨN+1
0

〈ΨN
0 |eτH ĉe−τH |ΨN+1

0 〉〈ΨN+1
0 |ĉ†|ΨN

0 〉

=
∑

ΨN+1
0

eτEN
0 〈ΨN

0 |ĉ|ΨN+1
0 〉e−τEN+1

0 〈ΨN+1
0 |ĉ†|ΨN

0 〉

=
∑

ΨN+1
0

|〈ΨN
0 |ĉ|ΨN+1

0 〉|2eτ(EN
0 −EN+1

0 ) . (4.22)

In principle and on the paper one would apply (4.17) to compute G(τ ′, τ). In practice
we encounter the problem of competing timescales: the time scale τ ′ − τ is usually not
compatible with the time scale τst on which matrix multiplication is numerically stable.
Without correction results for large values of τ will be unreliable [5].
To circumvent this problem, we applied the method suggested by M.Feldbacher and
F.F.Assaad [35]. The argument goes like this: the large τ ′ − τ interval is broken up
into a set of N small intervals of the length τst = (τ ′ − τ)/N . Whenever the time dis-
placement is a multiple of τst, the equal time Green function at the given time slice,
G(nτst, nτst), n = 1, · · · , N − 1 is recomputed in a stable manner and serves as starting
point for the next time evolution. This approach is based on the observation, that

Gs(τ, τ)2 = Gs(τ, τ) . (4.23)

Thus, for a fixed auxilliary field the equal time Green function is a projector. This can be
proven by conducting a singular value decomposition (SDV) of the matrix Gs(τ, τ), see
section 5.2 for the proof of (4.23). Following [35], a composition property for Gs(τ3, τ1)
holds:

Gs(τ3, τ1) = Bs(τ3, τ1)Gs(τ1, τ1)

= Bs(τ3, τ1)Gs(τ1, τ1)2

= Gs(τ3, τ1)Gs(τ1, τ1)

= Gs(τ3, τ1)
(
Bs(τ2, τ1)

)−1
Bs(τ2, τ1)Gs(τ1, τ1)

= Gs(τ3, τ2)Gs(τ2, τ1) . (4.24)
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4 The Projector QMC Method

In general, given a time interval τ of length τ = Nτst we obtain:

Gs(θ + τ, θ) = Gs(θ + τ, θ + τ − τst) · · ·Gs(θ + 2τst, θ + τst)Gs(θ + τst, θ)

=
N−1∏
n=0

Gs(θ + [n + 1]τst, θ + nτst) . (4.25)

In the product above each Green function extends over an imaginary time interval of τst

and can therefore be computed accurately via matrix multiplication.
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5 Outline of the Monte Carlo Technique

The Monte Carlo method is a stochastical process to obtain the expectation value 〈A〉
of an observable A at in principle arbitrary precision with error bars included. As it has
been argued in the last chapter the principle quantity to evaluate expectation values is
the partition function. This quantity can be calculated exactly (except for the Trotter
error from discretization of order ∆τ2) in the case that all configurations of the auxilliary
fields are known. The goal of the Monte Carlo technique is to chose from all possible
configurations those N -parts which enter the partition function with a significant weight.
Having done this, the observable is calculated for each of these configurations and the mean
value is formed. This procedure is repeated several times, each time with a new that is
independent set of highly probable configurations. According to the central limit theorem
the thus obtained mean values are normal distributed around the exact expectation value
of the observable.
In order to implement the Monte Carlo method in the algorithm one has to find a way to
extract the weight Ps which belongs to each configuration. As it will be shown this weight
can be formulated with the equal time Green function. Therefore the Green function is
the decisive entity in choosing of configurations that is in the update procedure.

5.1 The Monte Carlo sampling

The challenge lies in the numerical calculation of the integral

〈A〉 =
∫

Ω
d~sP (~s)A(~s) (5.1)

over the configuration space Ω. The probability distribution P (~s), with
∫
Ω d~sP (~s) = 1

and P (~s) ≥ 0 ∀~s ∈ Ω, is of course not known. Starting from a random configuration of the
HS-field ~s it is nevertheless possible to arrive at a sequence of configurations which are dis-
tributed according to the probability P (~s). A configuration of the HS-field ~s is determined
by Ising spins on all lattice sites and time slices. Figuratively one can think of the HS-field
in the case of two spatial dimensions as a three dimensional matrix consisting of a two
dimensional lattice on each time slice and each lattice site is occupied by an up or down
spin. Let us assume that we already have a set of field configurations {~s1, ~s2, · · · , ~sN} be-
ing distributed according to P (~s). Then the integral (5.1) can be evaluated approximately
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as

〈A〉 ≈ 1
N

N∑
i=1,~si∈P (~s)

A(~si) . (5.2)

In the case of many and mutually independent sets {{~s1,i}, {~s2,i}, · · · |i = 1 · · ·N} the cen-
tral limit theorem holds in the limit N → ∞. Thereby one gains the mean value with a
statistical value according to the width σ of the Gaussian distribution.
We understand the unknown and sought-after distribution P (~s) as the equilibrium distri-
bution of a Markov process. The Markov chain of first order is defined with a discrete
Monte Carlo time t like this: the future only depends on the present that is the state of the
system at t+1 only follows from its state at t and in particular is conditionally independent
of the past. The Markov chain is determined by a transition matrix T~s2,~s1

which describes
the transition probability ~s1 → ~s2. T is assumed to be ergodic and suitably normalized.
Therefore the time evolution of the distribution reads [6]

P (~s2)t+1 =
∑
s1

T~s2,~s1
P (~s1)t (5.3)

The equilibrium distribution P (~s), defined as P (~s)t→∞ = P (~s) fulfills the condition of
detailed balance

T~s2,~s1
P (~s1) = T~s1,~s2

P (~s2). (5.4)

To go from configuration ~s1 to configuration ~s2 a single spin flip algorithm is used. This
means that the flipping probability is calculated for every single point si,n of the discrete
field ~s1, characterized by a spatial coordinate i and the imaginary time coordinate n. The
decision on acceptance or denial of a spin flip is based on the flipping probability and is
done stochastically, e.g. with a Metropolis scheme (in the appendix). Like this one sweeps
through the whole lattice in space and time and creates a Markov chain of configurations.
Naturally two consecutive configurations are highly correlated since at maximum (in the
case of acceptance) one of the N×n spins was altered. Generally the autocorrelation func-
tion CA(t) of the observable A can be assumed to be exponentially falling, CA(t) ∝ e−t/τ0 .
Here τ0 determines the time scale after which a configuration independent from the start-
ing configuration is reached. The autocorrelation time τ0 is usually dependent of the
individual observables and the concomitant symmetries of the Hamiltonian.
In order to apply the central limit theorem we introduce the terms sweep and bin which
allows us to reformulate (5.2):

Abin =
1
N

N∑
i=1

Asweep(~st=τ0·i) . (5.5)
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5.1 The Monte Carlo sampling

Thus we measure the Observable on N conditionally independent configurations at dis-
tance τ0 and regroup the individual measurements to the mean value Abin. Several mutu-
ally independent mean values Abin(tbin), tbin = 1, · · ·M are defined equally as

Abin(tbin) =
1
N

N∑
i=1

Asweep(~st=τ0·i+(tbin−1)Nτ0) . (5.6)

The error of the expectation value obtained from the M mean values Abin is given by the
variance σ =

√
〈A2

bin〉 − 〈Abin〉2. In the present work the error analysis was however done
with an alternative method, called the jackknife error analysis. This technique allows to
determine the errors of functions which depend on several observables [9].

5.1.1 Implementation in the algorithm

According to (4.9), an observable A in the PQMC algorithm is computed via

〈A〉 =
∑
s

Ps 〈A〉s . (5.7)

The weight Ps of an time slice (index n) and lattice site (index i) dependent field config-
uration s = si,n is

Ps =
det[P†Bs(2θ, 0)P]∑
s〈ΨT |Us(2θ, 0)|ΨT 〉

(5.8)

As mentioned above, to move form a given configuration s to the next configuration s′,
we make a single spin flip decision. This decision is governed by the ratio

R =
Ps′
Ps

=
det[P†Bs′(2θ, 0)P]
det[P†Bs(2θ, 0)P]

(5.9)

A single spin flip means a change in the imaginary time propagator B(2θ, 0) (3.19), more
precisely the interaction term eV (sn) is altered to eV (s′n). Following [5] this term can be
written as

eV (s′n) =
(
1 + [eV (s′n)e−V (sn) − 1]

)
eV (sn) =

(
1 + ∆

)
eV (sn) . (5.10)

The new propagator is therefore

Bs′(2θ, 0) =
m∏

n=1

eV(s′n)e−∆τT (5.11)

= Bs′(2θ, τ)Bs′(τ, 0)

=

Bs′(2θ,τ)︷ ︸︸ ︷
eV(s′m)e−∆τT . . . eV(s′n+1)e−∆τT

Bs′(τ,0)︷ ︸︸ ︷
eV(s′n)e−∆τT . . . eV(s′1)e−∆τT

= eV(s′m)e−∆τT . . . eV(s′n+1)e−∆τT
(
1 + ∆

)
eV (sn)e−∆τT . . . eV(s′1)e−∆τT

= Bs(2θ, τ)
(
1 + ∆

)
Bs(τ, 0)
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with 2θ = m∆τ . This allows us to rewrite the ratio R [5] to

R =
det[P†Bs′(2θ, 0)P]
det[P†Bs(2θ, 0)P]

=
det[P†Bs(2θ, τ)

(
1 + ∆

)
Bs(τ, 0)P]

det[P†Bs(2θ, 0)P]

=
det[B<

s

(
1 + ∆

)
B>

s ]

det[B<
s B>

s ]

= det[B<
s

(
1 + ∆

)
B>

s

(
B<

s B>
s

)−1
]

= det[1 + B<
s ∆B>

s

(
B<

s B>
s

)−1
]

= det[1 + ∆B>
s

(
B<

s B>
s

)−1
B<

s ]

= det[1 + ∆
(
1−Gs(τ)

)
] , (5.12)

The ratio of the probability weights Ps and Ps′ is thus completely determined by the
matrix ∆ and the equal time Green function Gs(τ). In other words, to compute R for two
neighbouring configurations, s and s′, we have to compute the Green function of s.
If the spin flip is accepted, the Green function has to be recomputed:

Gs′(τ) = 1−
(
1 + ∆

)
B>

s

(
B<

s

(
1 + ∆

)
B>

s

)−1

B<
s (5.13)

Since Gs′(τ) differs form Gs(τ) only by the matrix ∆, which has a few non-zero compo-
nents, computational effort can be greatly reduced by applying a matrix inversion tech-
nique, the Sherman-Morrison formula [9].
To sum up, we have shown how the Monte-Carlo approach can be implemented in the
PQMC algorithm. Observables are measured on a series of field configurations which are
regarded to be distributed according to the equilibrium distribution. Configurations are
generated, starting from a completely random Ising field, on the basis of a single spin flip
scheme.

5.2 The PQMC algorithm

This section concludes the technical part by summarizing the essential steps of the com-
puter algorithm and its practical realization. Some formula although itself correct on the
paper cannot be transfered one-to-one to the program. This is due to finite precision of
the numbers being processed and competing scales which without correction result in a
loss of information. Stabilization schemes therefore constitute a vital part of numerical
calculations. One technique, the singular value decomposition (SDV) is extensively used
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5.2 The PQMC algorithm

within the algorithm. Here we sketch the main idea and refer for a more profound expla-
nation to the appendix.
SDV deals with matrices which are numerically close to singular, that is with matrices
which are close to be non-invertible. In our case this happens to the propagated wave
function: we start with a trial wave function, the Slater determinant (4.4), which is char-
acterized by the matrix P. P consists of Np (number of particles) orthonormal column
vectors the entries of which are distributed among the NS single particle states. To ap-
proximate the unknown ground state wave function, P is projected along the imaginary
time axis. This is done by the propagator B(τ, 0), which is essentially a matrix multipli-
cation with exponential factors. After the time τ the propagated wave function B(τ, 0)P
will be dominated by the large scales of B(τ, 0) at the expense of the small scales. When
τ is big this may result in two or more column vectors of B(τ, 0)P being almost the same,
in other words the determinant is zero and the matrix non-invertible.
To avoid numerically ill-conditioned matrices the matrix has to be recomputed on a regu-
lar basis. The stabilization, more precisely the orthogonalization is accomplished by SDV.
The unique feature of SDV lies in the fact that it leaves the equal time Green function,
the building block of the whole algorithm invariant. The line of reasoning goes like this:
the matrix B> = B(τ, 0)P is decomposed in a set of three matrices of a certain shape,
which is mathematically exact (see the appendix),

B> = U>DRVR . (5.14)

The essential information is enclosed in U>: its NP column vectors are obtained from the
column vectors of the original matrix B> through orthogonalization and normalization.
Since the same processing can be applied to B< = P†B(2θ, τ) = VLDLU<, the Green
function (4.13) is [5]

1−G(τ) = B>
(
B<B>

)−1
B<

= U>DRVR

(
VLDLU<U>DRVR

)−1
VLDLU<

= U>DRVR

(
DRVR

)−1(
U<U>

)−1(
VLDL

)−1
VLDLU<

= U>
(
U<U>

)−1
U< . (5.15)

Thus, the important information to compute the Green function is solely encoded in the
U>, U< matrices. Given this decomposition property we can easily show that the equal
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time Green function is a projector,

Gs(τ)2 =
(
1− U>

s

(
U<

s U>
s

)−1
U<

s

)2

= 1− 2U>
s

(
U<

s U>
s

)−1
U<

s + U>
s

(
U<

s U>
s

)−1
U<

s U>
s︸ ︷︷ ︸

=1

(
U<

s U>
s

)−1
U<

s

= 1− U>
s

(
U<

s U>
s

)−1
U<

s

= Gs(τ) . (5.16)

5.2.1 Efficient realization

An efficient implementation of the PQMC algorithm should result in a small warm-up
phase and low autocorrelation times. This assures that many valid measurements can be
taken which are both independent of each other and - to reflect the particle interaction
correctly - rely on a valid configuration of auxilliary fields. In the following we sketch the
essential steps leading to a fast and stable algorithm [5].
As mentioned before, the pivotal quantity is the equal time Green function Gs(τ),

Gs(τ) = 1−
nτ∏

n=1

eV(sn)e−∆τTP

(
P†

m∏
n=1

eV(sn)e−∆τTP

)−1

P†
m∏

n=nτ+1

eV(sn)e−∆τT

= 1−B>
s

(
B<

s B>
s

)−1
B<

s

= 1− U>
s

(
U<

s U>
s

)−1
U<

s (5.17)

At this point it is appropriate to clarify on the use of the field variable s. Generally
spoken, there is an independent HS field for each lattice site i and time slice n. Those
individual fields take the values ±1 and are subject to the single spin flip decisions as
discussed above. That is every field fluctuates in Monte Carlo time between the values
±1. The matrix P is propagated along the imaginary time axis and at each time slice n

a sweep through the lattice is made resulting in a new configuration on that time slice.
This configuration is denoted by the index sn. The Green function Gs(τ) at any given
time τ being a non-local function relies on the entirety of fields i.e on the momentary
values of N ×m field variables, which is indicated by the index s.

During the simulation a specified number of sweeps are done each of which consists of a
downward run from τ = 2θ to τ = ∆τ and a subsequent upward run from τ = ∆τ to
τ = 2θ. In the course of propagation the SDV stabilization scheme is applied periodically.
The total imaginary time interval 2θ = m∆τ is thus segmented into n sub-intervals of
length τ1 such that nτ1 = 2θ. This is shown schematically in Fig.5.1.
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5.2 The PQMC algorithm

Figure 5.1: Schematic illustration of the updating and storage procedure. The projector matrix
P (P†) is propagated via matrix multiplication along the imaginary time axis in the upward
(downward) direction. The Green function at time slices τ1, · · ·nτ1 which requires both U> and U<

is obtained by orthonormalizing the U -matrix (U> or U<, depending on direction of propagation)
and reading its counterpart from the storage. The same storage slot is then filled with the U -matrix
to be used in the following run.
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To save computer time we store the matrices U<
nτ

(downward move) and U>
nτ

(upward
move) each time they have been calculated. This gives us a fresh estimate of the Green
function every τ1 time step: U>

nτ
is read in from the storage slot where it has been stored

upon diagonalization at the previous upward run. Together with the just calculated and
orthonormalized matrix U<

nτ
it constitutes the Green function Gs(nτ ) (5.17). U<

nτ
is then

stored at the same storage slot for the following upward run to which the same logic
applies.
At the beginning of the sweeps a random field srnd is used at all time slices and lattices
sites and the storage slots are filled with propagations according to the random field. All
observables are measured symmetrically around the middle time slice n = m/2, usually
on the time slices m/2 − 10, · · ·m/2 + 10. Since the Green function can be calculated in
a stable manner we have access to all observables via Wick’s theorem.
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6 Results

All numerical results presented in this chapter have been obtained with the previously
illustrated PQMC algorithm. The general goal was to study the Hubbard model on the
honeycomb lattice with different sets of the parameters U and H. In the canonical frame-
work of the PQMC simulation the magnetic field H was mimicked by implementing the
magnetization Mz. The magnetization is altered by varying the number of electrons in the
spin-up sector and keeping the total number of elctrons constant. In principle it is possible
to obtain the corresponding vertical magnetic field from the vertical magnetization,

B =
dE0

dMz
=

E0(N,Mz + 1)− E0(N,Mz − 1)
2

. (6.1)

Since the numerical effort to obtain well converged Green functions G(τ) is considerable,
dynamic calculations were only done for a 6× 6 lattice. At zero temperature the spectral
density can be extracted from the knowledge of the Green function via

Gk(τ) = 〈ĉk(τ)ĉ†k〉 =
∫

dωe−ωτA(k, ω) . (6.2)

Formally, A(k, ω) can be obtained with an inverse Laplace transform. However, due to
competing scales this inversion is numerically ill-defined. Furthermore, the Green function
is in general only known on a set of discrete points in imaginary time.
Instead, to extract spectral data we used the Maximum-Entropy method (MEM), more
precisely a stochastic version of MEM. In a nutshell, this method uses an systematic
averaging approach to select candidate solutions which are consistent with the data and
takes their average [40],[41],[42].

6.1 Static observables

The orbital components of the equal time spin-spin correlation function S+−(k) are
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S+−
µ,ν (k) =

1
N2

∑
i,j

e−ık(i−j)〈S+
µ,iS

−
ν,j〉

=
1

N2

∑
i,j

e−ık(i−j)〈ĉ†i,↑ĉi,↓ĉ
†
j,↓ĉj,↑〉

=
1

N2

∑
i,j

e−ık(i−j)
(
〈ĉ†i,↑ĉi,↓〉〈ĉ†j,↓ĉj,↑〉︸ ︷︷ ︸

=0

+〈ĉ†i,↑ĉi,↑〉〈ĉ†j,↓ĉj,↓〉
)

=
1

N2

∑
i,j

e−ık(i−j)〈ĉ†i,↑ĉi,↑〉〈ĉ†j,↓ĉj,↓〉 . (6.3)

To arrive at the third line Wick’s theorem was applied and the knowledge that the spin
up and spin down channels are factorized1. From now on we omit the orbital indices
µ, ν which indicate the sublattices A and B and take µ = ν = 1 unless stated otherwise.
The transversal magnetization is m+− = 1

N

√
S+−(q) at the ordering vector q = (0, 0).

Measuring the vertical magnetization using the spin-spin correlation function Szz(k) does
not give us anything new, since this is what we pluged in in the first place.
In case of half filling on a L×L-lattice with two orbitals on each lattice point there exists
a total electron number of Ntot = N↑ + N↓ = 2L · L. The magnetization is defined as

Mz =
(N↑ −N↓)
(N↑ + N↓)

=
(N↑ −N↓)

2L · L
. (6.4)

The measurements were made on lattices of size 10× 10, 12× 12, 14× 14 and 16× 16. As
shown in Fig.6.1 there does not exist a gap at a interaction strength of U = 2 but it opens
up if U exceeds the critical interaction strength. From Fig.6.2 we expect Uc to be in the
range Uc ≈ 4−5. This in agreement with results which were obtained previously [13], [16].

6.2 Excitation spectra

We define the Green functions

Gk,σ = 〈ĉk,σ(τ)ĉ†k,σ〉

Gk,σ = 〈ĉ†k,σ(τ)ĉk,σ〉 . (6.5)

In order to get a complete picture of the single particle excitations in general on has to
look at both Green functions Gk,σ and Gk,σ. Probing the unoccupied states by inserting a

1It is important to note that Wick’s theorem holds for a given Hubbard-Stratonovich field only. Its use

is however justified here since the observables are computed at a set of distinct Hubbard-Stratonovich

configurations.
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(a) The initial rise of the staggered magnetization is attributed

to the nesting property of the lattice whereas its subsequent

decrease is a consequence of total polarization.
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Figure 6.1: Staggered magnetization vs. magnetization Mz for U < Uc and U > Uc. Mea-
surements were taken with the projection parameter θ = 20 and with discretization parameter
∆τ = 0.1. Extrapolations to 1/L → 0 were conducted when possible.
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Figure 6.2: Staggered magnetization and the mean field parameter mx,MF vs. interaction strength
U . For comparison, mean-field data is plotted.

particle via 〈ĉk,σ(τ)ĉ†k,σ〉 eperimentally corresponds to inverse photoemission spectroscopy
(IPES). Likewise photoemission spektroscopy (PES) yields information about the occupied
band structure below the chemical potential. In case of half filling Gk,σ and Gk,σ are linked
via a particle-hole transformation. The condition of half-filling reads∑

σ

〈ĉ†i,σ ĉi,σ〉 = 1 . (6.6)

and thus fixes the number of electrons per site to one. On bipartite lattices this im-
plies the invariance of the Hubbard Hamiltonian, H = HT + HU under a particle-hole-
transformation which is defined as

ĉi,σ → ηiĉ
†
i,−σ , (6.7)

with ηi = ±1 for i ∈ A,B. This takes â↑ to â†↓ and b̂↑ to -b̂†↓. The Green function Gk,σ(τ)
is transformed like

Gk,σ(τ) =
1

N2

∑
i,j

〈ĉi,σ(τ)ĉ†j,σ〉e
−ık(i−j)

p−h−transf.
= ηiηj

1
N2

∑
i,j

〈ĉ†i,−σ(τ)ĉj,−σ〉e−ık(i−j) (6.8)

Thus, the Green function being a 2 × 2-matrix, acquires a minus sign only on the off-
diagonal elements that is if i and j belong to different sublattices.
In short this means to study Gk,↑(τ) = 〈ĉ†k,↑(τ)ĉk,↑〉 one only has to look at
Gk,↓(τ) = 〈ĉk,↓(τ)ĉ†k,,↓〉.
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Figure 6.3: Single particle spectral function A↑,↑(k, ω), the excitation spectra are labelled IPES
and PES according to the experimental measurement. Owing to the discreteness of the k-vectors
the locus of the chemical potenial µ = 0 can only be determined approximately.
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Figure 6.4: Single particle spectral function A↑,↑(k, ω) below and beyond the critical interaction
Uc. In order to estimate the influence of the finite-size effects, the energy gap (the excitation energy
at k = K) was plotted as a function of inverse lattice size and linearly extrapolated to 1/L → 0.
At U = 5 the gap stays finite in this limit (fU=2(x) = −0.08 + 1.24x, fU=5(x) = −0.45 + 1.89x).
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the mean field approximation (ch.2).

Figure 6.5: Single particle spectral function A↑,↑(k, ω), from top to bottom the magnetization
Mz increases. Peaks of the spektral density are highlighted. We measure in the up-spin sector and
for Mz = 0.25 and Mz = 0.5 one observes below the up-spin band weaker excitations which have
dominatly down character due to the coupling of up and down-spin electrons. For comparison,
the corresponding mean field data has been plotted. Since the chemical potential cannot be fixed
without the corresponding PES measurements, the energy scale in Fig.(a)-(c) is just valid for
relative comparisons.
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6 Results

As apparent from Fig.6.2, the single particle excitation spectra A↑,↑(k, ω) display contribu-
tions which stem from the down spin sector. This can attributed to the electron-electron
interaction which couples both sectors. In a simple picture, we understand this in terms
of the propagation of a single up-spin electron which due to correlation effects picks up
the dynamics of a down-spin electron.
This picture is consistent with the spectral functions we obtain in the mean field treat-
ment 2.5. In the mean field approximation the excitation bands at different energies are
however a direct consequence of the diagonalization of the mean-field Hamiltonian and we
observe a similar distribution of the spectral weight.
In order to numerically prove the claim that an external magnetic field is inclined to open
up a gap at the Fermi energy and thereby to lower the critical U , PES measurements of
the spectral function for various magnetic fields would have to be carried out. This could
not be accomplished within the time frame of this work.
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7 Conclusion

The objective of this thesis was to study the ground state properties of the Hubbard model
with a magnetic field term on the honeycomb lattice. This has been done using two ap-
proaches. First, we applied a mean field decoupling scheme to characterize the different
phases of the system. We justified this approach by showing that the symmetry breaking
phase transition to the canted antiferromagnetic state is a consequence of a Stoner like
instability. We showed that the magnetic field generates a finite density of states at the
Fermi energy and that nesting is present between the up and down spin Fermi surfaces.
The transverse spin susceptibility diverges logarithmically and hence the critical value of
U at which the transition to the canted antiferromagnet occurs vanishes. The interplay
between the magnetic field and the interaction strength was visualized in a phase diagram.
The single-particle spectral function and the concomitant density of states were evaluated
to demonstrate the opening and subsequent closing of the gap with increasing magnetic
field.
In a second step, the system was studied using the projector quantum Monte Carlo
(PQMC) approach [5]. The essential steps for the numerical treatment of the many-body
problem were elucidated and include the path integral formulation of the partition func-
tion, the mapping of the electron-electron interaction to configurations of non-interacting
Ising spins and the representation of the trial wave function as a Slater determinant. Via
Wick’s theorem which holds for a fixed configuration of the auxiliary field all observables
can be reduced to Green functions. The zero-temperature time displaced Green function
was implemented in a stable and efficient way in the pre-existing code (which had been
written by F.F. Assaad) using a method suggested by M. Feldbacher and F.F. Assaad [35].
The numerical simulations go a good way in confirming the picture which emerges from
the mean-field approximation. Although only lattices up to size 16 × 16 were considered
and extrapolation to 1/L was only possible in a few cases, what one can establish quite
rigorously is the existence of a magnetic ordered state above a critical Uc. Furthermore,
the single particle excitation spectra which correspond to the experimental technique of
inverse photoemission spectroscopy seem to suggest a close similarity to the mean field
spectra. This makes us confident in claiming that already on the mean field level a good
portion of the essential physics of the Hubbard model on the honeycomb lattice can be
understood.
However, for a complete picture and in order to detect the opening of the gap at the Fermi
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7 Conclusion

energy, spectral measurements corresponding to photoemission spectroscopy are needed.
This, together with calculations at larger lattice sizes could be the subject of future re-
search.
Finally, I would like to thank Fakher for guidance and teaching, Thomas for enlightening
discussions and Jutta for reading the manuscript.
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Appendix

A Lattice structure

The honeycomb (hexagonal) lattice has two atoms per unit cell and consists of two inter-
penetrating triangular sublattices A and B. Two inequivalent Dirac points K and K′ can
be identified in the Brillouin zone, i.e. they are not connected by a linear combination of
reciprocal lattice vectors.

(a) Real space lattice vectors,

a1 = a
“
1, 0

”
, a2 = a

“
1
2
,
√

3
2

”
.

(b) Reciprocal space lattice

vectors, b1 = 2π
a

“
1,− 1√

3

”
,

b2 = 2π
a

“
0, 2√

3

”
. The two

inequivalent Dirac points are

denoted K and K′.

(c) Contour plot of the free dispersion re-

lation, with the high symmetrie path of

the first Brilloin zone, Γ-K-M -Γ.

Figure .1: Defintion of real and reciprocal lattice vectors of the honeycomb lattice.

Near each corner of the Brillouin zone the energy depends conically on the wave vector
k = (kx, ky). The dispersion relation therefore is linear on the displacement δk,

|E| = h̄vF |δk| . (.1)

This can be shown by a low-energy approximation of the tight binding Hamiltonian (2.3)

HT = −t
∑
k,σ

(
â†k,σ b̂†k,σ

) 0 H12

H21 0

âk,σ

b̂k,σ

 , (.2)

with H12 = H∗
21. The following arguments are basically a summary of the references [28],

[43] and [44]. Using standard notation we write down the Dirac points in a slightly different
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7 Conclusion

way than indicated above, i.e. with the translation K′ → K′ −
(
b1 + b2

)
. This results

in K,K′ = ±2π
a

(
2
3 , 0
)

with Γ ≡
(
0, 0
)
. We now expand HT around the two inequivalent

points K and K′ and subsequently obtain the linearized Hamiltonian HDirac = HK + HK′.
To linear order a Taylor expansion around the K-point gives

H12(K + k) = H12(K)︸ ︷︷ ︸
=0

−
√

3
2

a
(
kx − ıky

)
. (.3)

Thus,

HK =
√

3
2

a t
∑
k,σ

(
â†k,σ b̂†k,σ

) 0 kx − ıky

kx + ıky 0

âk,σ

b̂k,σ

 . (.4)

The same procedure can be applied to the valley around K′ leading to

HK′ =
√

3
2

a t
∑
k,σ

(
â†k,σ b̂†k,σ

) 0 −kx − ıky

−kx + ıky 0

âk,σ

b̂k,σ

 . (.5)

Upon diagonalization one gets the two branches

E(k) = ±
√

3
2

a t
√

k2
x + k2

y , (.6)

which confirms (.1). Here the energy independent group velocity of the low-energy exci-
tations vF =

√
3

2h̄ a t was defined.
The low energy excitations are therefore massless quasiparticles. In the following the cor-
respondance of the low energy tight binding model to massless (2+1) dimensional QED
will be shown. To proceed we introduce a spinor notation

φK+k,σ =

âK+k,σ

b̂K+k,σ

 . (.7)

Since these spinors result from the two atomic unit cell of the lattice they are not related
to electron spin but to ”pseudospin” which discriminates between sublattice A and B.
Like real spin this degree of freedom is described by the Pauli matrices σi. We can write
(.4) and (.6) as a two dimensional Dirac equation,

HDirac = HK + HK′ =
∑
k,σ

φ†K+k,σHKφK+k,σ + φ†K′+k,σHK′φK′+k,σ . (.8)

In the above equation, we use the short notation

HK = h̄vF

(
σ1kx + σ2ky

)
HK′ = h̄vF

(
− σ1kx + σ2ky

)
. (.9)
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B Singular Value Decompostion

In addition to the Pauli matrices σi describing the sublattice degree of freedom one may
use a second set of Pauli matrices τi acting in the valley (K,K′) subspace. To arrive at a
compact notation we introduce the four-component spinor Ψk,σ,

Ψk,σ =

ΨK+k,σ

ΨK′+k,σ

 =


âK+k,σ

b̂K+k,σ

b̂K′+k,σ

âK′+k,σ

 . (.10)

Defining the 4× 4 matrices α1,2 [44] as

α1,2 = τ3 ⊗ (σ1, σ2) =

σ1 0

0 −σ1

 ,

σ2 0

0 −σ2

 , (.11)

the Hamiltonian (.8) reads

HDirac = h̄vF

∑
k,σ

Ψ†
k,σHkΨk,σ , Hk = α1kx + α2ky . (.12)

One may also write

HkΨ = EΨ , Hk = vF

(
k · σ

)
⊗ τ3 . (.13)

Summarizing the above results, the quasiparticles on the honeycomb lattice are at low
energies accurately described by the (2 + 1) dimensional Dirac equation. The effective
speed of light is vF ≈ 106m/s. To conclude with, based on topological arguments the
Dirac cone can be shown to be stable against third neighbour (i.e diagonal) hopping,
characterized by t′ as long as −3 ≤ t′/t < 1 is satisfied [44]. As the same authors point
out, the appearence of gapless Dirac fermions is not limited to the honeycomb lattice and
is a generic feature of a class of two dimensional lattices which interpolate between square
(t′ = t) and π-flux (t′ = −t) lattices.

B Singular Value Decompostion

SDV is a technique which deals with matrices that are either singular or else numerically
very close to singular [9]. Its based on a theorem of linear algebra which states that any
matrix A (M ×N,M ≥ N) can be written as the matrix product of a column-orthogonal
matrix U (M × N), a diagonal matrix D (N × N) and the transpose of an orthogonal
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7 Conclusion

matrix V (N ×N):


A


=


U


·


d1

· · ·

dN


 VT

 . (.14)

The diagonal matrix D contains the scales d1 · · · dN : positive or (numerically close to) zero
elements. The orthogonalization routine can be understood intuitively using the familiar
Gram-Schmidt orthonormalization method, but the actual decompostion as we use is based
on the Householder algorithm. This technique is more stable and is extensively discussed
in [9].

C Metropolis scheme

The Metropolis algorithm is based on the assumption that a simulated thermody-
namic system changes its configuration from energy E1 to energy E2 with probability
p = e−(E2−E1)/kBT in agreement with the Boltzmann probability distribution [9]. In the
case of E2 > E1 the probability p to change is smaller than unity and this option is ac-
cepted according to this probability. The decision to accept/reject the move in that case
is made by generating a random number r between zero and unity: the move is accepted if
r < p and rejected otherwise. In the opposite situation E2 < E1 the move is automatically
accepted. More compactly this strategy can be written as

pacceptance(old → new) = min
(
1, p
)

. (.15)

As described in section 5.1.1, the decision to move from a given configuration of auxilliary
fields s to a new configuration s′ with one Ising spin being flipped is governed by the ratio
(5.12)

R =
Ps′
Ps

. (.16)

Thus, the proposed change is accepted with probability

pacceptance(s → s′) = min
(
1, R

)
. (.17)
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D Approximation of tanh(x)

D Approximation of tanh(x)

In order to evaluate the antiferromagnetic susceptibility χAFM the following approxima-
tion for tanh(x) is used which amounts to a linearization around x = 0 is used:

tanh(x) =


x, |x| < 1

1, x > 1

−1, x < −1

 (.18)

χ+−
µµ − χ+−

µν =
1
2

∑
j=γ,η

1
N

∑
k

1
2ξj

tanh
(

β

2
ξj

)
(.19)

=
1
2

∑
j=γ,η

∫
dξjDOS(ξj)

1
2ξj

tanh
(

β

2
ξj

)

=
1
2

∑
j=γ,η

[∫ +2/β

−2/β
dξj

β

2
ξj +

∫ W

+2/β
dξj −

∫ −2/β

−W
dξj

]
DOS(ξj)

1
2ξj

≈ 1
2

∑
j=γ,η

DOS(εF,j)

[∫ W

+2/β
dξj −

∫ −2/β

−W
dξj

]
1

2ξj

=
1
2

∑
j=γ,η

DOS(εF,j) ln
(W

2T

)
In line three we introduced the bandwidth W and approximated the density of states with
the density of states at the fermi level, DOS(ξj) ≈ DOS(εF,j).
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