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A B S T R A C T

In this thesis we investigate an extension of the Diagrammatic Deter-
minantal Quantum Monte-Carlo method to real times. To that end we
employed a Keldysh-formalism which allows us to jointly construct
a perturbation theory in imaginary and real time. This enables us to
study the time dependent evolution of a thermal initial state. The feasi-
bility and the limits of the method arising due to the dynamical sign
problem are discussed with respect to simple toy-models. As a notable
application we study an experiment from the field of ultracold atoms in
optical lattices. We examine the reaction of a correlated electron system
to the sudden change of one of its parameters.

Z U S A M M E N FA S S U N G

In der vorliegenden Arbeit beschäftigten wir uns mit einer Erweite-
rung des Diagrammatischen Quanten-Monte-Carlo auf reale Zeiten.
Hierzu wurde ein Keldysh-Formalismus benutzt, der die Möglich-
keit bietet eine Störungstheorie gleichwertig in imaginärer und realer
Zeit zu entwickeln. Mit dieser Methode ist es möglich die zeitliche
Evolution korrelierter thermischer Zustände durchzuführen. Die Im-
plementierbarkeit und die Grenzen dieses Verfahrens aufgrund des
dynamischen Vorzeichenproblems werden anhand einfacher Spielzeug-
Modelle diskutiert. Als besondere Anwendung wird ein Experiment
aus dem Bereich ultrakalter Atome in optischen Gittern betrachtet, bei
dem untersucht wird wie ein korreliertes Elektronen-System auf die
plötzliche Änderung eines Umgebungsparameters reagiert.
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1I N T R O D U C T I O N

“Good morning,” said the little prince.
“Good morning,” said the merchant.

This was a merchant who sold pills
that had been invented to quench thirst.
You need only swallow one pill a week,

and you would feel no need of anything to drink.
“Why are you selling those?” asked the little prince.

“Because they save a tremendous amount of time,” said the merchant.
“Computations have been made by experts. With these pills,

you save fifty-three minutes in every week.”
"And what do I do with those fifty-three minutes?"

"Anything you like..."
"As for me," said the little prince to himself,

"if I had fifty-three minutes to spend as I liked,
I should walk at my leisure toward a spring of fresh water. . . "

— Antoine de Saint-Exupéry [1]

For ages humans have philosophized about the meaning of time, its
role for their lives and what to do with the time in between. Thus one
wonders that the study of correlated electrons got by mostly without
including explicit realtime-dependencies into their model systems. If we
neglect the correlations and assume the picture of nearly independent
electrons we can, with some success, get by with (numerically) solving
the Schrödinger equation. But a lot of the more interesting effects like
superconductivity in high-TC superconductors can only be understood
if we include the strong correlations present in the host materials which
are due to the strong Coulomb repulsion in those compounds. These
correlation induced effects pose serious challenges for themselves, thus
a lot of work during the past decades focused on the study of a mate-
rial’s equilibrium properties. Concurrently, this period saw the rising
use of computers in home use as well as in the scientific community
and thus we now have a solid amount of methods that allow for the
study of equilibrium properties while taking advantage of the computa-
tional power that today’s sophisticated computers offer. The main tools
at hand today are Exact Diagonalization (ED), Density-Matrix Renor-
malization Group (DMRG) methods and, of course, Quantum Monte
Carlo (QMC) methods. These numerical tools offer the possibility to
verify analytical results gained by e.g. perturbation theory and offer
an unbiased approach to physics in general and especially allow the
study of intermediate regimes of a models parameters where analytical
methods are almost never applicable. QMC offers a lot of flexibility to
design algorithms for a concrete problem, is easily parallizable and the
computational cost often only scales like a power law, if the dreaded
sign problem is absent. The obtained results are exact within their
statistical error bars. This was all well and nice for thermodynamics
but to get back at the quote, how did time-dependency enter solid-state
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2 introduction

physics? Already in the Matsubara-formalism it was possible to derive
the response of a system in linear response theory, if the external pertur-
bation is small, via the Kubo-formula [2]. But if one was interested in
results beyond linear response it was necessary to develop other means.
Already some 50 years ago Schwinger [3] and Keldysh[4] worked on
the problem of constructing perturbation theories that allowed the
calculation of time-dependent correlation functions. Of particular im-
portance is Schwinger’s introduction of the closed time-path Green’s
function. Their theory allowed for the calculation of time-dependent
correlation functions but assumed that the initial state is not a corre-
lated state. Thus one was looking for theories that allowed the initialOr one assumes that

the many-particle
interactions are
switched on
adiabatically

state to be a correlated one. Fujita made the first progress to include
the initial correlations [5, 6] via influence functions and discussed the
decay of these initial correlations. Later, Hall [7] simplified the theory
by introducing Green’s functions and derived a Wick’s theorem that
includes the initial correlations. After that, a complete overview over
Non-equilibrium Green’s function (NEGF) techniques up to that point
in time was given by Danielewicz[8]. He clarified the Green’s function
formalism, derived a Wick’s theorem (and the conditions of its validity)
and studied the conditions for the validity of the Boltzmann equation.
In the 90s, Wagner [9] showed that the density matrix for the averaging
process need not be a thermal density-matrix and recast the pertur-
bative expansion of the Green’s function into one where the Green’s
function has a 3x3-matrix structure and showed how Matsubara, Feyn-
man and Keldysh theory can be recovered as special cases of the theory.
At the end of that decade there was a renewed interest into functional
integral methods that are derived within the Contourpath framework
[10, 11, 12].

As at the beginning of this century a lot of numerical methods
for tackling thermodynamic properties were available there was an
increased interest in reformulating those ideas in a way that allowed
the investigation of time-dependent problems beyond the limits of
linear response theory. Examples are the application of a Keldysh-
formalism to Density Functional Theory in [13, 14] to study time-
dependent properties or the formulation of a time-dependent version of
Dynamical Mean Field Theory (DMFT) in [15, 16]. In the context of this
diploma thesis we may of course not forget recent formulations of QMC

methods on the realtime Keldysh-contour [17, 18]. It is an interesting
note, that the inclusion of correlated initial states is not only of interest
to solid-state physicists but to people from high energy physics as well
[19]. Here we also find attempts to include the imaginary part of the
extended contour (clarified in Figure 3) into the realtime part of the
contour [20]. Also from the field of high energy physics stems the only
alternative (known to the author) to the Keldysh-formalism: Umezawas
Thermofield Dynamics approach [22, 19, 23, 24, 25] whose use seemssee [21] for the

instructive case of the
harmonic oscillator in

TFD.

to have spread not that far from effects in HEP [26].
That concludes this review of the historical development of realtime

theories, so let’s take a look at the problems people have studied using
Keldysh-methods. In solid-state physics Keldysh-methods were used
to study non-equilibrium super-conductivity and quantum effects in
disordered systems[27, 28]. Already Keldysh used his technique [4] to
derive kinetic equations for the equilibrium properties of interacting
electrons with phonons. The Keldysh-method found use in transport
theory because of the greater generality it allowed. As arbitrary interac-
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tions can be inserted into the formalism it is possible to study nonlinear
effects that are not in reach of linear response theory. A traditional
example is the transport theory of metals (see the overview in [28]). The
transport through a metallic junction given a time-dependent external
potential at the electrodes is discussed in [29] and an expression for
the current is derived. The author claims [30] that this represents an ex-
tension of the established Landauer formalism. The transport through
an interacting electron system given a static potential bias between
the leads was derived in [31]. These impurity models gained a lot of
interest recently as they are the mathematical models of quantum dots
that are coupled to some metallic leads. In contrast to their equilibrium
properties, about their non-equilibrium behaviour is much less known.
The origins of the non-equilibrium situation can be quite different. The
most obvious one would be an external interaction that is switched
on at some time. A system can also be placed out of equilibrium by
starting from an atypical initial condition or it can be placed between
infinite external reservoirs that impose the out-of equilibrium situation.

The widespread use of QMC methods starts with the invention of al-
gorithms that are applicable to impurity models. The method of choice
was the Hirsch-Fye algorithm, invented in 1986 [32]. Employing the
Trotter-decomposition at finite imaginary time slices, the Hirsch-Fye
algorithm suffers from a systematic discretization error. This problem
was overcome by the development of the Diagrammatic Determinan-
tal QMC (DDQMC) algorithm in 2005 [33] which is not employing any
discretization scheme and as such is accurate up to machine precision Because of this

property it is a
Continuous Time
QMC (CTQMC)
method. This sets it
apart from
Hirsch-Fye because of
its lacking systematic
error.

within its error bars. We employ the DDQMC method where we expand
in powers of the interaction, nevertheless there exist variants that ex-
pand in the hybridization to the leads [34]. The method is directly
derived from a path integral formulation of the partition function Z,
thus it provides a great deal of flexibility. The partition function is then
expanded into its diagrams and the resulting diagrams get summed up
via the stochastic process. For a given perturbation order a set of inter-
action vertices is generated whose corresponding Feynman diagrams
get summed up by invoking Wick’s theorem. As the method has its
roots in a formulation of the partition function in the action the method
is easily extended to include not only the imaginary time τ but also the
Keldysh-Contour. Having done that, the method is ready for dealing
with situations out of equilibrium. Similar work along the same lines
was reported in [18, 17].

As an application outside of the toy-model regime we investigate the
time-dependent response of a one-dimensional Hubbard-chain to the
removal of the interaction term HU. This contrasts with studies done in
[35] where the quench of free electrons to the sudden switch on of HU
was studied. Using DMFT with a QMC impurity solver they lack access
to spatially resolved correlation functions. Experimentally these quench
dynamics are realized using experiments with ultracold atoms [36].
The atoms get trapped with electromagnetic fields in the ultra high
vacuum and additional external magnetic fields can be used to tune This allows a

realization of a
theoretical model that
will propably never
be achieved in a
solid-state
experiment.

the interaction strength of the atoms from attractive to repulsive. Being
trapped in the vacuum their isolation from the rest of the world is close
to perfect. By tuning the interaction to the right regime it is possible
to create highly correlated electron systems which are characterized
by the competition between the kinetic energy and the interactions.
The ensemble of atoms gets structured using laser induced potentials,
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that way the lattice structure forms. The dimensionality gets controlled
by the confinement of the optical potential that restricts the electron
movement to low dimensions. In the study of these low-dimensional
systems the most pressing questions are

• Does the system evolve to a new steady state?

• Under what circumstances does the system evolve to a new steady
state?

• If it does, what is the nature of this state?

• Does the system retain memory of the initial state?

In those cases that lead to a new thermal state a natural question is, how
the interplay between the unitarity of the time-evolution of quantum
mechanics and the vast amount of degrees of freedom in a many-
body sytem lead to the observed long-time behaviour. This question
is addressed by the Eigenstate Thermalization Hypothesis (ETH) in
Chapter 6.
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I was born not knowing and have had
only a little time to change that here and there.

— Richard Feynman

This chapter introduces the basic theory from which we will later derive
a QMC method suitable for the implementation on a computer. We start
by introducing some venerable attempts at constructing perturbation
theories for dealing with time-dependent problems in a canonical for-
mulation, will analyze their deficiencies and improve on them. Having
constructed a theory that fits our needs we will cast it in a form of
functional integrals and proceed to the derivation of a QMC algorithm.

Here we assume the usual decomposition of the Hamilton-operator
in a solvable problem given by H0 and a possibly time-dependent
interaction V . The full problem is then given by

H = H0 + V . (2.1)

Next we state some known results about time-evolution in the Dirac-
picture. Dirac’s time-evolution-operator U fulfills the known differential For connections to

the other pictures, see
the literature
([37, 30, 2])

equation

i
d

dt
U(t, t ′) = V(t)U(t, t ′) (2.2)

whose solution can be written in the form of a time-ordered exponential

U(t, t ′) = Texp(−i

t∫
t ′

dt ′′V(t ′′))

=

∞∑
n=0

(−i)n

n!
TC

t∫
t0

dt1....

t∫
t0

dtnV(t1)...V(tn)

(2.3)

with the time-ordering TC on a linear piece of time of the real axis. The
connection to the Schrödinger-picture is

U(t, t ′) = U−1
0 (t, t0)US(t, t ′)U0(t ′, t0) (2.4)

with U−1
0 (t ′, t) = e−iH0(t−t

′) and US is the time-evolution in the
Schrödinger-picture.

2.1 feynman’s perturbation theory

Let’s start out with the possibly familiar perturbation theory by Feyn-
man [37]. We begin by examining an expectation value in the Heisenberg-
picture

O(t) = 〈0|OH(t)|0〉 (2.5)

7



8 perturbation theory 101

where |0〉 is the ground state of the full interacting Hamiltonian. ButThus at t = −∞ the
system is in the
non-interacting state
|−∞〉.

we don’t know the interacting ground-state |0〉, so we need to express
it in terms of the normalized non-interacting ground-state |−∞〉. To
achieve some progress towards this goal we just have to make the first
assumption: that the Hamiltonian has no time-dependency. Then we
can artificially introduce the adiabatic switching on of the interaction:Here α is a positive

infinitesimal
α = 0+. V(t) = Ve−α|t|.

Note, that the interaction is symmetrically switched on in the past as it
is switched off in the future. For these adiabatic types of switching pro-
cedures the Gell-Mann-Low theorem provides the connection between
the fully interacting and the non-interacting state,

|0〉 = U(0,−∞)|−∞〉 (2.6)

with the time-evolution-operator U(t, t ′) of the interaction-picture. We
also transform the observable OH to the interaction-picture according
to

AH(t) = U(0, t)AI(t)U(t, 0). (2.7)

We get for the expectation-value

O(t) = 〈−∞|U(−∞, 0)U(0, t)OI(t)U(t, 0)U(0,−∞)|−∞〉. (2.8)

To achieve some kind of ordering of the operators we start to rewriteThis Ordering will
get clearer later on. the left-hand bra-vector:

〈−∞|U(−∞, 0) = 〈∞|U(∞,−∞)U(−∞, 0). (2.9)

That brings eq. (2.8) to:

O(t) = 〈∞|U(∞,−∞)U(−∞, 0)U(0, t)OI(t)U(t, 0)U(0,−∞)|−∞〉
= 〈∞|U(∞,−∞)U(−∞, t)OI(t)U(t,−∞)|−∞〉.

(2.10)

We can connect that state in the future with the state in the past if
we make the additional assumption, that the non-interacting ground-
state is non-degenerate. Then, because of the symmetry in time of the
switching procedure, they should be equal up to a phase-factor eiL:

|∞〉 = eiL|−∞〉. (2.11)

We determine this phase-factor as follows:

|∞〉 = U(∞, 0)|0〉
= U(∞, 0)U(0,−∞)|−∞〉
= U(∞,−∞)|−∞〉
!(2.11)
= eiL|−∞〉.

(2.12)

Now, multiplying the last two lines with 〈−∞| from the left, we get the
relation for eiL:

eiL = 〈−∞|U(∞,−∞)|−∞〉. (2.13)
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Inserting this into eq. (2.10) we are almost done as the final expression
doesn’t contain any references to states in the future anymore:

O(t) = 〈∞|U(∞, t)OI(t)U(t,−∞)|−∞〉
= e−iL〈−∞|U(∞, t)︸ ︷︷ ︸

∈[t,∞]

OI(t)U(t,−∞)︸ ︷︷ ︸
∈[−∞,t]

|−∞〉. (2.14)

Note that the time-evolution-operators are already in a time-ordered
order, thus we can insert a time-ordering-operator T ,

O(t) = e−iL〈−∞|TU(∞, t)OI(t)U(t,−∞)|−∞〉
=
〈−∞|TU(∞,−∞)OI(t)|−∞〉
〈−∞|U(∞,−∞)|−∞〉 .

(2.15)

As the T -operator sorted all operators to their respective places, we
were able to join the time-evolution-operators and therefore arrived
at the final expression of Feynman-perturbation-theory. Now one can
start expanding U(∞,−∞) and calculate observables to any desired
order, provided the initial non-interacting ground-state allows a Wick- This is actually not a

new assumption , as
this ground-state
should allow a
Wick-decomposition
provided it was really
non-interacting.

decomposition. This expansion can be cast into diagrams and as usual
the vacuum amplitude(the denominator of eq. (2.15)) cancels.

In the course of getting till here we collected quite a bunch of as-
sumptions:

• H may contain interactions but no time-dependency, else we can’t
employ Gell-Mann-Low’s-Theorem(2.6).

• The non-interacting ground-state |−∞〉 must be non-degenerate.

• |−∞〉 must allow a Wick-decomposition.

So let’s see if we can do better with Keldysh’s theory.

2.2 keldysh’s theory

Again, we’re interested in the expectation value of an operator O at
time t starting from an initial time t0, but this time we want to allow
for explicitly time-dependent Hamiltonians H = H(t). We can still do
this by evolving some initial state |〉 given at a time t0 to the time t, let
the operator act and evolve back: From here on

everything is in the
interaction picture.O(t) = 〈|OH(t)|〉 = 〈|U(t0, t)OI(t)U(t, t0)|〉. (2.16)

We proceed to cast those two time-evolution-operators in the form of
time-ordered exponentials [8]. The left one is They’re conjugate to

each other, so what do
you do if you take the
complex conjugate of
(2.18)? you put a
minus before the i
(compensated by
interchanging the
limits of integration),
then reverse the order
of the operators
(compensated by
TA).

U(t0, t) =
∞∑
n=0

(−i)n

n!
TA

t0∫
t

dt1....

t0∫
t

dtnV(t1)...V(tn) (2.17)

and the right one is

U(t, t0) =
∞∑
n=0

(−i)n

n!
TC

t∫
t0

dt1....

t∫
t0

dtnV(t1)...V(tn). (2.18)

Here we introduced two new time-ordering operators, the chronological
one, TC, with

TC(A(t1)B(t2)) = Θ(t1 − t2)A(t1)B(t2) −Θ(t2 − t1)B(t2)A(t1),
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which sorts the greatest time to the left and the anti-chronological one,
TA, with

TA(A(t1)B(t2)) = Θ(t2 − t1)A(t1)B(t2) −Θ(t1 − t2)B(t2)A(t1),

which sorts the greatest time to the right. Introducing the time-ordered
exponentials into eq. (2.16) we get

O(t) = 〈TA exp(−i

t0∫
t

dt ′VI(t
′))OI(t)T

C exp(−i

t∫
t0

dt ′VI(t
′))〉. (2.19)

We could construct a theory with the same diagrammatic expansion
as the previous Feynman-theory, if we were able to join those two
exponentials. To achieve that we introduce a new time-ordering operator
TCK that recognizes whether an operator belongs on the left side (TA

is acting here) of the observable or on the right (this is where TC acts).
Additionally, as an mnemonic to remember the ordering, we introduce
the famous Keldysh-contour.This theory thus gets

around referencing a
state in the far future,
by taking instead the

initial state again.

Figure 1: This is the Keldysh-contour CK starting at some initial time t0 and
extending up to the maximum expansion time texp. On the x-axis is
the real-time. Along the whole contour lives the contour-time-variable
s.

The definition of TCK is thus

TCKA(s)B(s
′) = A(s)B(s ′)Θ(s− s ′) −B(s ′)A(s)Θ(s ′ − s) (2.20)

where s is now a value along the Keldysh-contour, therefore it is from
the interval [0, 2texp]. If we take a look at a bunch of operators, there
are four possibilities, two where s and s ′ reside on the same part of the
contour:Note the ordering

that is still operating
on these parts of the

contour.
TCK(A(s)B(s

′)) = TC(A(t)B(t ′)) s,s’ are on the forward branch,

TCK(A(s)B(s
′)) = TA(A(t)B(t ′)) s,s’ are on the backward branch.

and two where they are on different parts:s, s’ are on different
parts of the contour,

thus we know which
order the operators

are in and can
evaluate the
T -operators.

TCK(A(s)B(s
′)) = −B(t ′)A(t) s is on the forward,

TCK(A(s)B(s
′)) = A(t)B(t ′) s’ is on the forward.

As s and s ′ still point to real times we were able to replace the contour
times by their linear equivalents on the real axis.
TCK is now able to sort the chronological and antichronolgical parts

on their corresponding sides, so we can rewrite eq. (2.19) as

O(s) = 〈TCK exp(−i
∫
CK

dz ′V(z ′))OI(s)〉 = 〈TCKSCKOI(s)〉. (2.21)
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We have allowed to evaluate the observable at contour-times s, thus you
expect O(s) with s taken on the forward branch, to be the same as if s Useful for debugging!

is taken on the backward branch, because the two branches have to be
physically indistinguishable. So far, the length of the Keldysh-contour
seems to be given by the time of the observable that one is interested
in, but if we look at eq. (2.19) we see, that we can insert additional time-
evolution-operators symmetrically on both sides of the observable and
in that way elongate the contour up to infinity. You just have to make Time-evolution still

fulfills the
group-property.

sure that you have all points in time you are interested in included.
We didn’t say anything about the initial state with which we take the
average, but it is clear, that if the Keldysh theory is to be useful, it must
be a state that allows a Wick-decomposition. Then we can expand the
exponential in eq. (2.21) and construct a perturbation theory as usual.

So on what parts of Feynman’s theory did we improve?

• An explicit time-dependence is allowed.

• We don’t need to invoke Gell-Mann-Low’s theorem(eq. (2.6)), as
we don’t need any assumptions about an adiabatic switching
procedure.

• No information about the final state needed.

But still, we need to assume that the state used for averaging allows a
Wick-decomposition. In certain applications (e.g. particle physics) this
is a valid assumption, as the initial state is one of a free particle, but
in solid-state physics we often like to treat correlated initial states that
we can’t cover in Keldysh’s theory; or only if we assume that we are
looking at times where those initial correlations aren’t dominant. So this requires

systems where they
can actually decay.

2.3 what about correlated initial states?

2.3.1 Imaginary-Time-Formalism

Let’s start by recapitulating some pieces of the imaginary-time formal-
ism [9]. The thermal average of an observable is given by HereH =H0+V

and time -
independent.O = Tr(ρO) (2.22)

with a given density-matrix ρ. Actually it can be arbitrary(see [9]), but
we restrict ourselves to the thermal case where

ρ =
e−βH

Z

with the partition function Z = Tre−βH. We also define a density-matrix
for the non-interacting system H0 ,

ρ0 =
e−βH0

Z0

with Z0 = Tre−βH0 . With that we can rewrite the density-matrix of the
interacting system as:

ρ =
1

Z
e−βH0eβH0e−βH

=
Z0
Z
ρ0e

βH0e−βH
(2.23)
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Figure 2: The contour to visualize the ordering on the imaginary axis.

which is, employing eq. (2.4),

ρ =
Z0
Z
ρ0U(−iβ, 0). (2.24)

In the last line we used the interaction-picture time-evolution U(τ, τ ′)
and allowed its evaluation for complex times. U(τ, τ ′) can also beτ is used to

distinguish the time
from true real times.

written in the form of a time-ordered exponential(see eq. (2.3)), with
the distinction that T sorts along the imaginary axis in [0,−iβ], which
corresponds to an ordering along the contour of Figure 2.

With this expression(eq. (2.24)) we can rewrite the thermal average,

〈O〉 = Tr(ρO) = Z0
Z
Tr(ρ0UD(−iβ, 0)O〉 (2.25)

and now one can envision the perturbative expansion in a similar way
as before.

2.3.2 Piecing it all together

Now, having separate expansions for the density-matrix and the time-
evolution we can start piecing the parts of the puzzle together [9]. Let’s
take a look at the thermal average of a time-dependent observable,

O(t) = Tr(ρOH(t)). (2.26)

We insert the expansions of the initial density matrix(see eq. (2.25)) and
of the time-evolution of OH(t)(see eq. (2.21)), which leads us to

O(s) = Tr(ρ0U(−iβ, 0)TCK [SCKO(s)]).

We now employ the same trick as in the section before and introduce
a new contour and a new common time-ordering. To that end we
introduce our final contour C (see Figure 3) Then we can join the
expansions of the real-time-evolution-operator SCK and of the density-
matrix in one common evolution-operator,

SC(z, z ′) = TC exp(−i

z∫
z ′

dz ′′V(z ′′)), (2.27)

where z and z ′ are unspecified points on the contour. Finally we can
write the average of an observable as:

〈O(s)〉 = Z0
Z
〈TC[SCO(s)]〉0 with 〈...〉0 = Tr(ρ0...). (2.28)
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Figure 3: The full contour C that enables us to cover imaginary-time evolution
and real-time-evolution on a common footing. t− is a time on the
forward branch, t+ is a time on the backward branch and τ is a
time on the imaginary branch. This contour is parametrized by the
contour-time s, that runs from 0 to texp on the forward contour, from
texp to 2texp on the backward contour and from 2texp to 2texp +β

on the imaginary branch.

Again we have introduced a time-variable s living on the contour
which is now from the interval [0, 2texp + β]. One can easily extend
the theory above to correlation-functions with two times, such as the
contour-ordered Green’s function, which is defined on the contour as:

Ga,b(z, z ′) = 〈TCSCc†a(z)cb(z ′)〉0
= 〈SCc†a(z)cb(z ′)〉0Θ(z, z ′) − 〈SCcb(z ′)c†a(z)〉0Θ(z ′, z)
= G<(z, z ′)Θ(z, z ′) −G>(z, z ′)Θ(z ′, z).

(2.29)

We have defined the Θ-function on the contour as usual:

Θ(z1, z2) = 1 if z1 is later on C as z2
= 0 if z2 is later on C as z1.

(2.30)

That means that if z is parametrized according to a linear z(s) like it is
given in (4.25) then Θ(z1, z2) = Θ(z(s1), z(s2)) reduces to Θ(s1 − s2).

Now we have a theory that seems to encompass everything we
wished for:

• initial correlations can be treated,

• time-dependent problems can be treated,

• no reference to a state in the future is made.

But as there’s no such thing as a free lunch, we pay for this with a
complicated structure of the theory that for the moment is hidden in
the time-ordered exponential.

Before we’re going to derive equations that allow us to actually cal-
culate something we cast the above theory into a functional framework.

2.4 a functional approach

We start with a partition function into which we introduced an artificial
time-dependency [38, 39, 10]:

Z = Tr(ρU(0, texp)U(texp, 0)) (2.31)
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where we use again a thermal density-matrix, ρ = e−βH, and theAll
evolution-operators
can use the same
Hamiltonian if one
restricts the real-time
evolution to the real
axis via suitable
Θ-functions.

time-evolution-operator is only on the real-axis for now. Similarly to eq.
(2.24)) we can rewrite the thermal density-matrix:

Z = Tr(ρ0U(−iβ, 0)U(0, texp)U(texp, 0)). (2.32)

With that and the picture of the full contour(Figure 3) in mind we
can start to construct a functional expression. We subdivide the inter-
val [0, 2texp + β] in infinitesimal parts δ and insert a time-evolution-
operator between every two time-slices. Note, as there’s no evolution
on the points of turn-around(texp and 2texp which corresponds to 0)
we insert the unity instead. To work with a concrete example we split
up each branch of the real-time axis in 3 parts and the imaginary part
of the contour in two parts. Then we rewrite the partition function as

Z = Tr[UiUi1U+U+U+
1U−U−U−] (2.33)

where

• U− is evolution about an infinitesimal on the forward branch.

• U+ is evolution about an infinitesimal on the backward branch.

• Ui is evolution about an infinitesimal on the imaginary axis.
For the unfamiliar

notation see
Appendix A.

Next we insert a representation of the unity in the fermion coherent-
state basis (A.1) between every time-evolution-operator and rewrite the
trace as a functional integral (A.2), which leads us to:j corresponds to the

index of the time-slice.

Z =

∫ 9∏
j=0

djdje−jj〈−0|Ui|1〉〈1|Ui|2〉〈2|1|3〉〈3|U+|4〉〈4|U+|5〉·

· 〈5|U+|6〉〈6|1|7〉〈7|U−|8〉〈8|U−|9〉〈9|U−|0〉.

(2.34)

Next we must determine the action of the time-evolution-operator
between two time-slices. For a normal-ordered Hamiltonian it isThe expression on the

left and right of the
≈ are related by the

Trotter-
decomposition.[38]

〈j|Uδ|j+ 1〉 = 〈j|e−iH( ~c†,~c)δ|j+ 1〉 ≈ e−iH(j,j+1)δ〈j|j+ 1〉

= e−iH(j,j+1)δej(j+1).
(2.35)

We can handle the time-evolution on those different contour-parts in a
unified manner, if we agree to lump this information together with the
delta:It’s +δ on C−

because e−itH is the
forward evolution

δ =


+δ δ ∈ C−

−δ δ ∈ C+

−iδ δ ∈ Ci.
(2.36)

That way we get for the partition function of our example

Z =

∫ 9∏
j=0

djje−jje−(0)(1)−iδH(−0,1)e(1)(2)−iδH(1,2)e(3)(4)−iδH(3,4)

e(4)(5)−iδH(4,5)e(5)(6)−iδH(5,6)e(1)(2)−iδH(1,2)e(7)(8)−iδH(7,8)

e(8)(9)−iδH(8,9)e(9)(0)−iδH(9,0)e(2)(3)e(6)(7).
(2.37)
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The powers of the exponentials get merged in the action S

Z =

∫ 9∏
j=0

djdjeS(...,j,j,...). (2.38)

As the Hamiltonian is assumed to be separable in the non-interacting
part H0 and the interaction V , we can separate the action into the
gaussian part

S0 =

9∑
j=0

(−jj) − (0)(1) − iδH0(−0, 1) + (1)(2) − iδH0(1, 2) + (3)(4)

− iδH0(3, 4) + (4)(5) − iδH0(4, 5) + (5)(6) − iδH0(5, 6) + (1)(2)

− iδH0(1, 2) + (7)(8) − iδH0(7, 8) + (8)(9) − iδH0(8, 9) + (9)(0)

− iδH0(9, 0) + (2)(3) + (6)(7)

(2.39)

and the interaction part

S1 =

9∑
j=0

−iδjV(j, j+ 1). (2.40)

Let’s take a closer look at the gaussian part of the action S0. Being
quadratic we can represent it by a matrix:



0

1

2

3

4

5

6

7

8

9



T 

−1 µi

−1 mi

−1 1

−1 m−

−1 m−

−1 m−

−1 1

−1 m+

−1 m+

m+ −1





0

1

2

3

4

5

6

7

8

9


(2.41)

with ml = −iε̂δl + 1, µi = −iε̂δi − 1 and ε̂ is a matrix that contains all
eigenvalues of the free Hamiltonian on its diagonal. We identify the
following structure in this expression: Here we use the ~φj

notation to better see
the structure in the
time-index j.

~φjG
−1
0

~φj+1 = −~φjφj +
~φj(−iδε̂+ 1)~φj+1

= δ(~φj
~φj+1 − ~φj

δ
− i~φjε̂~φj+1).

(2.42)

This means that a continuum-representation of the above matrix is

G−1
0 = ∂z − iH0 (2.43)

where we’ve introduced the free propagator G−1
0 . With that we have

all parts for taking the continuum’s limit that allows us to write the
partition function as a functional integral

Z =

∫
D[~φ(z), ~φ(z)]eS[

~φ(z),~φ(z)] (2.44)
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where the action S is

S[~φ(z), ~φ(z)] =
∫
C
dz~φ(z)G−1

0
~φ(z) − i

∫
C
dzV[~φ(z), ~φ(z)]

= S0 + S1

(2.45)

and the integrals run along our contour C. The information on whichIf you evaluate these
integrals, you have to
introduce a
parametrization of
the contour C, e.g.
z(s)(most likely sth.
piecewise linear) as in
(4.25).

part of the contour we evaluate is now stored in the differential dz. If
we introduce the averaging with the gaussian part

〈•〉0 =
1

Z0

∫
D[~φ(z), ~φ(z)]eS0[

~φ(z),~φ(z)]• (2.46)

we can interpret the partition function as an averaging of the interaction
with the free part:

Z =

∫
D[~φ(z), ~φ(z)]eS0[

~φ(z),~φ(z)]+S1[
~φ(z),~φ(z)]

= Z0〈eS1[
~φ(z),~φ(z)]〉0.

(2.47)

We are also able to rewrite the partition function as a generating func-For more details, take
a look in [27]. tional,

Z[~J,~̄J] =
∫ ∫
D[~φ(z), ~φ(z)]eS0(

~φ(z),~φ(z))+S1(
~φ(z),~φ(z))+i~J~φ(z)−i~φ(z)~̄J

(2.48)

from which correlation-functions can be generated by functional deriva-
tion. From eq. (2.47) we can write down the expansion of the partition
functionThe parametrization

z(s) takes care of the
book-keeping of the

phase-factors. Z = Z0

∞∑
n=0

(−i)n

n!

∫
C
dz1...

∫
C
dzn〈V(z1)V(z2)....V(zn)〉0. (2.49)

The one-particle Green’s function can be generated via differentiating
eq. (2.48) twice with respect to the source,

Ga,b(z, z ′) =
δ2Z[~J,~̄J]
δJaδJb

∣∣∣∣
J,J=0

=
1

Z

∫
D[~φ(z), ~φ(z)]eS(

~φ(z),~φ(z))φa(z)φb(z
′)

= 〈TCc†a(z)cb(z ′)〉

(2.50)

and in the last line we can make the connection to the canonical formula-
tion of the previous chapter. Notice that the real-time branches are phys-This is an aid for

debugging. Note also,
that observables are

at least continuous at
the turn-around

points.

ically indistinguishable, thus for any operator holds A(t+) = A(t−).
Analogous to the partition function we expand the Green’s function:

Ga,b(s, s ′) =
Z0
Z

∞∑
n=0

(−i)n

n!

∫
C

dz1 . . . dzn〈V(z1) . . . V(zn)φa(s)φb(s ′)〉0.

(2.51)

Wicks theorem can be easily derived in the functional approach, being
a property of gaussian integrals[27]. A derivation in the canonical
formulation is also possible [8, 9]. Having now stated the theory in
a canonical formulation and in the functional framework we need to
derive equations of motions for eventually performing calculations.
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~F = d~p
dt

— Isaac Newton

Back in eq. (2.27) we arrived at an equation for the time-evolution
that’s not totally unlike the expression known from Feynman-, or
Matsubara-theory. Similarly it satisfies equations of motions Hz means that the

HamiltonianH has a
time-dependency in
the
Schrödinger-picture.

i
∂

∂z
U(z, z ′) = HzU(z, z ′) (3.1)

−i
∂

∂z ′
U(z, z ′) = U(z, z ′)Hz (3.2)

(3.3)

with the initial condition U(z, z) = 1. Starting from the connection
between Schrödinger- and Heisenberg-operators

AH(z) = U(0, z)AS(z)U(z, 0) (3.4)

we can derive the equation of motion for Heisenberg-operators

d

dz
AH(z) = i[Hz,AS(z)]H(z) + (

dAS(z)

dz
)H (3.5)

with the initial condition AH(0) = AS(0). Equipped with these relations
we want to derive equations of motion for the Green’s function [13].
From eq. (3.5) we infer that for the annihilator the equation

i
d

dz
ca(z) = [Hz, ca]H(z) (3.6)

and similarly for the adjungated operator holds. For the time-ordered The relation
d
dzΘ(z,z ′) =
δ(z,z ′) is assumed
with δ being the
Dirac-δ function.

Green’s function(2.29) we end up with

d

dz
Ga,b(z, z ′) = δ(z, z ′)δa,b + i〈TC[Hz, c†a]H(z)cb(z

′)〉 (3.7)

and similarly

d

dz ′
Ga,b(z, z ′) = −δ(z, z ′)δa,b + i〈TCc†a(z)[Hz, cb]H(z ′)〉. (3.8)

If we restrict z(s) to certain parts of the contour we can derive differ- From now on, all
operators are in the
Heisenberg-picture.

ential equations on linear parts of the contour [13]. For the real-time
lesser and greater Green’s functions we get

The δs vanish
because G</>/d/e

are defined having
their times on
completely different
branches of the
contour.

d

dt
G<a,b(t, t

′) = −i〈cb(t ′)[Ht, c†a](t)〉 (3.9)

d

dt ′
G<a,b(t, t

′) = −i〈[Ht, cb](t ′)c†a(t)〉 (3.10)

d

dt
G>a,b(t, t

′) = i〈[Ht, c†a](t), cb(t ′)〉 (3.11)

d

dt ′
G>a,b(t, t

′) = i〈c†a[Ht, cb](t ′)〉 (3.12)

17



18 equations of motion

with the initial condition G>(0, 0) = lim
η→0

GM(−iη, 0) and G<(0, 0) =

lim
η→0

GM(0,−iη). For these two Green’s functions the relation

[
G≶(t, t ′)

]†
= −G≶(t ′, t) (3.13)

holds.
Next there are the Green’s functions that have exactly one time-

variable on the imaginary-axis

d

dt
G
e
a,b(t, τ) = −i〈cb(τ)[Ht, c†a](t)〉 (3.14)

d

dt
G
d
a,b(τ, t) = i〈c†a(τ)[Ht, cb](t)〉 (3.15)

where the initial-conditions are given by the Matsubara Green’s func-Note that τ is an
imaginary number. tion: Ge(0, τ) = GM(0, τ) and Gd(τ, 0) = GM(τ, 0). Gd and Ge are

related by [14]:

Ge(τ, t) = (Gd)†(t,β− τ). (3.16)

And finally there’s the Matsubara Green’s function with both of its
time-arguments on the imaginary axis.

d

dτ
GMa,b(τ, τ ′) = δ(τ− τ ′)δab + 〈Tτ[Hτ, c†a](τ)cb(τ ′)〉 (3.17)

d

dτ ′
GMa,b(τ, τ ′) = −δ(τ− τ ′)δab + 〈Tτc†a(τ)[Hτ, cb](τ ′)〉. (3.18)

These equations have to be solved with respect to the Kubo-Martin-
Schwinger-Boundary-conditions GM(τ+ iβ, τ ′) = −eβµNGM(τ, τ ′). In
the literature there’s a bunch of more powerful methods to solve for
the Matsubara Green’s function than solving the differential equation
(3.18) directly [2, 40, 41].
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [42]

4.1 monte-carlo methods

Basic probability theory states that the expectation value of an observ-
able, denoted by 〈O〉, is given by

〈O〉 =
∑
i

F(xi)O(xi) (4.1)

where the sum runs over all discrete states xi of the system. The value of
the observable for a given state is determined, hence O(xi) is calculated,
and multiplied by the weight F(xi) of the state. The idea is then, to
generate a series of microscopic states xi according to the distribution-
function F(xi). That way, states with a large weight in the distribution
function are generated with a larger probability than those with a small
weight. One method is to use a suitable Markov-chain for that task.
The new configurations don’t get drawn at random but according to
the distribution-function F. A Markov-process that generates a chain
of states {xn} defines the rules of the transition from a given initial
state xi to the next state xi+1. That is the transition from xi to xi+1 As the

Markov-process
generates the new
state only from the
preceding state, it has
no memory of how it
got there.

happens with a certain probability Pxi→xi+1 . The following state is then
determined according to the same rules. We can already deduce some
properties of these probabilities.

This first property
leads in QMC
simulations to the
problem known as the
fermionic sign
problem.

• Pxi→xi+1 must have an interpretation as probability, hence

Pxi→xi+1 > 0 ∀xi, xi+1. (4.2)

• The probability of getting in any subsequent state must be nor-
malized∑

xi+1

Pxi→xi+1 = 1. (4.3)

Further we expect the Markov-process to have a stationary distribution
that coincides with the desired distribution F. Having reached that
distribution, we want to stay there, that is∑

xi

F(xi)Pxi→xi+1 = F(xi+1) ∀xi+1. (4.4)

For the actual construction of the Markov-chain it is easier to demand
that the so called detailed balance condition holds:

F(xi)Pxi→xi+1 = F(xi+1)Pxi+1→xi . (4.5)

21
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Summing (4.5) over xi, it can be proven that this condition satisfies
stationarity. To progress further we split the transition probability P
into two parts.

• The new state xi+1 is proposed with proposal probability Txi→xi+1 .

• Then it is accepted with the probability of acceptance Axi→xi+1 .

That way we have

Pxi→xi+1 = Txi→xi+1Axi→xi+1 . (4.6)

Inserting this into (4.5) we have

F(xi)Txi→xi+1Axi→xi+1 = F(xi+1)Txi+1→xiAxi+1→xi . (4.7)

With the definition of the ratio

Zxi,xi+1 =
Txi+1→xiF(xi+1)

Txi→xi+1F(xi)
(4.8)

and the assumption that the acceptance probabilities have a functional
form that depends only on Zxi,xi+1 , that is

Axi→xi+1 = Φ(Zxi,xi+1),

we can rewrite eq. (4.5) as

Φ(Z)

Φ( 1Z )
= Z (4.9)

with Z an abbreviation for Zxi,xi+1 . Φ should map any positive value
to a probability, hence

Φ : (0,∞)→ [0, 1]. (4.10)

Now the only thing left to us, is specifying the function Φ. The most
popular choice is the one of Metropolis,

Φ(Z) = min(1,Z). (4.11)

Another possible choice is the so-called Heat-Bath-algorithm with

Φ(Z) =
Z

1+Z
. (4.12)

In an implementation we would first draw a random number r from the
interval [0, 1]. Then if r < Φ(Z) one accepts the proposed move xi+1,
else the move is rejected. That way we generate a Markov-Chain of states
xi, i ∈ {1, ...,N} of length N where each state xi is distributed according
to the distribution function F(xi). One has to take care that initially the
Markov-process has not yet relaxed to its stationary distribution F, thus
one has to include a certain warm-up time. Having these states xi we
can start the measurement of observables. The resulting Monte-Carlo
estimate of the observable is the average over all generated states:

〈O〉MC =
1

N

∑
i

O(xi). (4.13)

In case the central limit theorem holds the standard-deviation gives
the error according to ∆O = σO/

√
N. But there’s the catch, for the

central limit theorem to be applicable we need a large number of
uncorrelated measurements. But having generated the states xi via a
small local change to the preceding states, the different measurements
of the observables are of course correlated. Lacking the central limit
theorem, other types of estimators for observables have to be used, e.g.
the Jackknife-method or the Bootstrap method [43].
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4.2 ddqmc on the contour

For deriving a Markov-chain Quantum-Monte-Carlo as outlined in the
previous section we need the transition-probabilities between different
configurations. Starting from the partition function we derive a DDQMC

method on the full contour(remember Figure 3) similar as done in
[44, 40, 33] on the imaginary contour. For that we recall the expression
of the partition function on the contour, eq. (2.49)

Z = Z0

∞∑
n=0

(−i)n

n!

∫
C

dz1...
∫
C

dzn〈TCV(z1)V(z2)....V(zn)〉0. (4.14)

In the following we assume that we are looking at Hubbard-like models,
hence the interaction-part is

HU = U
∑
i

(ni,↑ −
1

2
)(ni,↓ −

1

2
) (4.15)

with ni,σ being the particle density of species σ on site i.
Similar as in [44] we introduce an additional Ising spin si in the

interaction

HU =
U

2

∑
i

∑
si=±1

(ni,↑ −
1

2
− siδ)(ni,↓ −

1

2
+ siδ) (4.16)

where we have introduced the new parameter δ. δ is an additional factor We will show in the
application-part, that
at least for
particle-hole
symmetric chains
δ→ 0 reduces the
dynamic sign
problem of the
real-time evolution.

to the partition function but it doesn’t influence the measurement of
physical observables, where it is equally occurring in the denominator
and the nominator. From thermodynamic QMC it is known that δ can
be used to reduce the sign-problem of the simulation. The usual choice
for 1D Hubbard-models to eliminate the sign-problem is δ = 1

2 + 0
+.

Introducing that into the general expansion for the partition function
(4.14) gives

Z

Z0
=

∞∑
n=0

(
−iU
2

)n
n!

∫
C

dz1
∑
i1,s1

. . .

∫
C

dzn
∑
in,sn

∏
σ

〈TC(ni1,σ(z1) −ασ,s1) . . . (nin,σ(zn) −ασ,sn)〉0

(4.17)

where we have introduced

ασ,si =
1

2
+ σsiδ (4.18)

and made use of the fact that for SU(2) - symmetric problems the
weight splits up in an ↑-part and a ↓ - part. We can compactify (4.17) by
introducing configurations. A configuration consists of Hubbard-vertices
with their Ising-spin Vj = [ij, zj, sj], that is

Cn = {[i1, z1, s1], . . . , [in, zn, sn]}. (4.19)

With that concept we can introduce the sum over the configuration-
space

∑
Cn

=

∞∑
n=0

1

n!

∫
C

dz1
∑
i1,s1

. . .

∫
C

dzn
∑
in,sn

. (4.20)
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With that (4.17) can be rewritten as

Z

Z0
=

∑
Cn

(
−i
U

2

)n∏
σ

〈TC(ni1,σ(z1)−ασ,s1) . . . (nin,σ(zn)−ασ,sn)〉0.

(4.21)

Using Wick’s theorem, the time-ordered average in the above equation
can be rewritten as a determinant,

〈TC(ni1,σ(z1) −ασ,s1) . . . (nin,σ(zn) −ασ,sn)〉0 =∣∣∣∣∣∣∣∣∣∣∣

G0i1,i1
(z1, z1) −ασ,s1 G0i1,i2

(z1, z2) · · · G0i1,in(z1, zn)

G0i2,i1
(z2, z1) G0i2,i2

(z2, z2) −ασ,s2 · · · G0i2,in(zn, zn)
...

...
...

G0in,i1
(zn, z1) G0in,i2

(zn, z2) · · · G0in,in(zn, zn) −ασ,sn

∣∣∣∣∣∣∣∣∣∣∣
= det(Mσ(Cn)).

(4.22)

The entries of Mσ(Cn) are given by the free Green’s function

M(Cn)i,k = G
(0)
i,k (zi, zk) = 〈TCc

†
i(zi)ck(zk)〉0. (4.23)

With all this, the partition function (4.21) can be cast in a rather conve-
nient form

Z

Z0
=

∑
Cn

(
−
iU

2

)n∏
σ

det(Mσ(Cn)). (4.24)

For the Monte-Carlo evaluation of the contour-integrals in (4.20) we
have to transform them to linear integrals. To achieve that we need to
specify the parametrization of the contour, and we choose the most
obvious linear one:

z(s) =


s s ∈ [0, texp]

2texp − s s ∈ (texp, 2texp]

−i(s− 2texp) s ∈ (2texp, 2texp +β].

(4.25)

Now you have to replace every contour-integral by

∫
C

dz · · · =
L∫
0

ds · dz(s)
ds

. . . (4.26)

with the contour-length L = 2texp + β. This phase-factor dz(s)ds can,
because of relation (4.25), take the values 1,−1,−i. With these notations
we can deduce the weight of a configuration from the partition function
(4.24)Note, that in

real-time evolution
the weight is usually

a complex value. W(Cn) =

(
−iU

2

)n∏
σ

det(Mσ(Cn))F(Cn) (4.27)

where F(Cn) collects the contribution from all phases in the configura-
tion:

F(Cn) =

n∏
k=0

dz(s)

ds

∣∣∣∣
s=sk

. (4.28)
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For the Markov-process as outlined above we need, additionally to the
weights, the proposal probabilities for the moves. The addition of a
vertex is proposed with TCn→Cn+1 =

1
2NL , which corresponds to the se-

lection of a spin(there are two of them), the choice of a site(from N sites)
and of a contour-time in the range from [0, 2texp + β]. The proposal
probability to remove a vertex is TCn+1→Cn = 1

n+1 which corresponds
to the selection of a vertex from Cn+1 which has n+ 1 vertices. Now we
would like to write down the moves for the Metropolis-algorithm but
we encounter the problem that G0 is an arbitrarily complex value and,
additionally, the expressions for the weights have imaginary units all
over them. So we can’t interpret these weights as probabilities (see (4.2)).
The solution is that instead of working with the weights W(Cn) we use
their absolute values |W(Cn)|, but we have to fix this up later when Note that playing

with the weights
means an alteration

of the stationary
distribution of the

Markov-process!

measuring observables by keeping track of the phase of a configuration.
We write down the moves with the imaginary units still intact, keeping
in mind that while implementing them we have to use the absolute
values:

PCn→Cn+1 = min

−iUNLF(Cn+1)
∏
σ

det(Mσ(Cn+1))

(n+ 1)F(Cn)
∏
σ

det(Mσ(Cn))
, 1

 (4.29)

and

PCn+1→Cn = min

 (n+ 1)F(Cn)
∏
σ

det(Mσ(Cn))

−iUNLF(Cn+1)
∏
σ

det(Mσ(Cn+1))
, 1

 . (4.30)

Theses two moves are usually sufficient for the ergodicity of the algo-
rithm. See [44] for a discussion of the cases where this doesn’t apply.

4.3 measuring observables

Having generated the Markov - chain of configurations we can start
to measure observables, e.g. Green’s functions. Having already an
expansion for the Green’s function (2.51) we can start rewriting it as a
sum over all configurations:

Gij(s, s ′) =
Z0
Z

∞∑
n=0

(−i)n

n!

∫
C

dz1 . . . dzn〈TCHU(z1) . . . HU(zn)c†i(z(s))cj(z(s
′))〉0

=

∑
Cn

(
− iU2

)n
F(Cn)

∏
σ

det(Mσ(Cn))〈〈Gij(s, s ′)〉〉Cn∑
Cn

(
− iU2

)n
F(Cn)

∏
σ

det(Mσ(Cn))

=

∑
Cn

W(Cn)〈〈Gij(s, s ′)〉〉Cn∑
Cn

W(Cn)

(4.31)

where we have similarly to [44] introduced the contribution of one Now we can see the
connection to the
Markov-process in
Section 4.1. The
weight of a
configuration
W(Cn) takes the
role of the probability
density F in (4.1).

configuration to the observable

〈〈Gij(s, s ′)〉〉Cn =
〈TCHU(z1) . . . Hu(zn)c†i(z(s))cj(z(s

′))〉0
〈TCHU(z1) . . . Hu(zn)〉0

. (4.32)
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Now we are at the right spot to elaborate a bit on the sign problem. As
stated before we have to replace the true weight W(Cn) by its absolute
value |W(Cn)|. We can repair this by rewriting the last equation of
(4.31) with W(Cn) = |W(Cn)|π(Cn). We have introduced the phase-
factor π(Cn) = ei arg(W(Cn)) =

W(Cn)
|W(Cn)|

. Then

Gij(s, s ′) =

∑
Cn

W(Cn)〈〈Gij(s, s ′)〉〉Cn∑
Cn

W(Cn)

=

∑
Cn

|W(Cn)|π(Cn)〈〈Gij(s, s ′)〉〉Cn∑
Cn

|W(Cn)|π(Cn)
.

expanding this fraction by
1∑

Cn

|W(Cn)|
gives:

=

∑
Cn

|W(Cn)|π(Cn)〈〈Gij(s,s ′)〉〉Cn∑
Cn

|W(Cn)|∑
Cn

|W(Cn)|π(Cn)∑
Cn

|W(Cn)|

=
〈πGij(s, s ′)〉
〈π〉

.

(4.33)

That way we see that measuring physical observables requires keeping
track of the phase-afflicted observable and of the phase itself. The
average value of the true physical observable is then determined as
their ratio.

For the reduction of higher Green’s functions to single particle
Green’s functions see [40].

4.4 tests

Similarly to [44] we derive an equation for the average expansion order
〈n〉, as it is a quite useful milestone when writing and debugging the
code. For a general interaction V the average expansion parameter 〈n〉
is given by

〈n〉 = Z0
Z
〈eS1n〉0

=
Z0
Z

∑
n

(−i)nn

n!

∫
C

dz1...
∫
C

dzn〈TCV(z1)...V(zn)〉0

=
−iZ0
Z

∑
n

(−i)n−1

(n− 1)!

∫
C

dz1...
∫
C

dzn−1

∫
C

dzn〈TCV(z1)...V(zn−1)V(zn)〉0

=
−iZ0
Z

∑
k

(−i)k

k!

∫
C

dz1...
∫
C

dzk

∫
C

dz〈TCV(z1)...V(zk)V(z)〉0

= −i

∫
C

dz〈V(z)〉.

(4.34)
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To further simplify, we assume that the interaction V is the same on the
forward and backward branch V(t+) = V(t−). Then we can simplify

∫
C

dz〈V(z)〉 =
texp∫
0

dt−V(t−) +

0∫
texp

dt+V(t+) − i

β∫
0

dτV(τ)

= −i

β∫
0

dτV(τ)

(4.35)

As the contributions of the real-time branches cancel, only the contribu-
tion of the imaginary time remains. That way we see, that the average
expansion order is completely determined by the imaginary-time evo-
lution of the system.
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Debugging is twice as hard as writing
the code in the first place.

Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

— Brian W. Kernighan

Having developed the theory and the algorithm in the previous parts,
we apply this to 1D Hubbard-like models. The second quantized Hamil-
tonian of the fermionic Hubbard-Model is c,c† of course fulfill

fermionic
commutation rules.H = −

∑
ijσ

tijc
†
iσcjσ +U

∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
) (5.1)

where ciσ annihilates an electron on site i with spin σ and c†iσ cre-
ates an electron on site i with σ being the z-component of the spin.
U is a local Coulomb-interaction and we already assumed that the
hopping-matrix tij is spin-independent. It is the simplest known model
that allows to study the interplay of kinetic-energy, lattice-structure,
Coulomb-interaction, Pauli’s exclusion principle and doping(set via
the chemical potential). A derivation from the general Hamiltonian
of solid-state physics first neglects all dynamics of the lattice. Then it
is assumed that at the relevant energy-scale around the Fermi-energy
there is only one relevant energy-band, that is, the overlap between
states of different bands is negligible. The Coulomb-interaction between
electrons is reduced to its on-site matrix-element U, because the overlap
of different atomic wave-functions with each other is assumed to be
small [2]. Albeit simple in appearance and formulated already in 1963 A solution in 1D can

be derived via the
Bethe-ansatz. See e.g.
[30].

[45] the general solution of the Hubbard-model is still not known. The
Hubbard-model is the most prominent toy of many-particle physicists
as being remarkable simple in appearance, it contains a good bunch of
interesting physics. It is used to discuss On increasingU, the

electron-electron
correlations increase
and for some finite
value the transition
to an insulator
occurs, because
single-particle
excitations get
suppressed. The
correlations force a
transition from a
correlated metal to a
paramagnetic
insulator [46].

• electronic properties of solids with narrow bands,

• transitions from metals to insulators, the Mott-transition,

• general properties of statistical mechanics,

• high-temperature super-conductivity in cuprate compounds.

The basic Hubbard model as sketched above is usually used as a
many-particle physicists playground. To describe real-life materials the
Hubbard model gets extended by additional terms or band-indices.
Then there are a couple of examples of uses of the Hubbard-model in
the literature [46]. It can be used to describe 1D polymer chains if ex-
tended with at least one additional nearest-neighbour interaction([47])
and some term that introduces a coupling to the nuclei. A comparison
of organic salts with a description in terms of a Hubbard-model is
done in [48]. The Hubbard-model was also used extensively to explain

31
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magnetism in transition metals. Transition metals have quite narrow
d-bands and the hopping and Coulomb matrix elements decay fast
with distance. Thus the restriction to an on-site repulsion on its own
would be well justified. But we can’t restrict the model to a single
band only as other bands are near in energy. This leads to the multi-
band Hubbard-model with band-dependent interactions. [49] shows
the necessity to work with a multiband Hubbard-model to explain the
magnetic properties of these substances. An application of the multi-
band Hubbard-model even found application at the description of the
behaviour of doped fullerenes[50]. These different bands arise due to
the number of doped atoms in the C60-host. They show numerically
that their model displays a Mott-transition using a Monte-Carlo tech-
nique. Theorists routinely claim that the Hubbard-model describes
High Temperature Super Conductivity (HTSC) phenomena in cuprate
compounds. The theoretical description starts often with the three-band
Hubbard-model in two dimensions where the electron states are located
on the Cu and O sites and an additional non-diagonal interaction is
introduced between Cu and O; as outlined in [51]. Due to the large
observed values of the electron-electron interaction in those materials
they are believed to be highly correlated materials. It is established
that magnetic excitations play a key role in the formation of Cooper
pairs[52] in the cuprates. Recently it was observed that pair excitations
already form before the onset of superconductivity [53]. Voroshilov [54]
claims that this preforming of pairs can be derived in the framework
of the 2D single band Hubbard-model. It is hoped that experiments
with ultracold atoms can provide an insight on the properties of large
Hubbard-like systems as they provide a clean environment for doing
experiments ([55] explores this idea). The most recent numerically exact
overview of the thermodynamic properties of the 2D Hubbard-model is
given in [56]. Being an important physical model, the Hubbard model
often finds use as a benchmark for new numerical methods [44].

In the following we restrict the discussion to nearest-neighbour hop-
ping, that is tij = t(δi+1,j + δi−1,j) in one dimension. Also note that all
time-scales have to be interpreted in units of the hopping-parameter t.

5.1 the free green’s function of the 1d hubbard-model

Being a perturbative method, the main ingredient of the DDQMC-algorithm
is the free Green’s function G0; thus we need to calculate G0 of the
Hubbard-model on the contour. Via a Fourier-transform in the space-
indices the free part H0 can be transformed to the diagonal representa-
tion

H0 =
∑
kσ

ε(k)c†kσckσ (5.2)
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with the spin-independent dispersion-relation ε(k) = −2tcos(k), where
we assumed the lattice-constant a to be 1 and have used periodic
boundary conditions. We solve the Heisenberg-equation (3.5) for c†q

d

dz
c†q(z) = i[H0, c†q](z)

= i[
∑
k

ε(k)c†kck, c†q](z)

= i
∑
k

ε(k)[c†kck, c†q](z)

= i
∑
k

ε(k)δqkc
†
k(z) = iε(q)c

†
q(z)

(5.3)

This ODE has the solution Note that the
derivatives in these
ODEs are not on a
linear domain but on
the contour C!

c†q(z(s)) = e
iε(q)z(s)c†q (5.4)

Analogously the result for the annihilator is

cq(z(s)) = e
−iε(q)z(s)cq (5.5)

Now we can write down the free Green’s function G0,< and G0,>:

G0,<
k,k ′(s, s

′) = 〈c†k(s)ck ′(s
′)〉0

= ei(ε(k)z(s)−ε(k
′)z(s ′))〈c†kck ′〉0

(5.6)

G0,>
k,k ′(s, s

′) = 〈ck ′(s ′)c
†
k(s)〉0

= ei(ε(k)z(s)−ε(k
′)z(s ′))〈ck ′c

†
k〉0

(5.7)

We’re still missing one piece, that is 〈c†kck ′〉. But the solution is known
[2] to be

〈c†kck ′〉 = δk,k ′nk

= δk,k ′f(ε(k)),
(5.8)

with the Fermi-function

f(x) =
1

1+ eβx
. (5.9)

Therefore we arrive at

G0,<
k,0 (s, s

′) = eiε(k)(z(s)−z(s
′)))f(ε(k)) (5.10)

G0,>
k,0 (s, s

′) = eiε(k)(z(s)−z(s
′)))(1− f(ε(k))) (5.11)

The contour-ordered Green’s function, that is the major building-block
for the expansion, is in the end:

G0k(s, s
′) = Θ(s− s ′)G0,<

k (s, s ′) −Θ(s ′ − s)G0,>
k (s, s ′) (5.12)

Note that this Green’s function has times in the contour-time s, thus
you need to transform them via z(s) to their physical times.
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5.2 the free time-dependent hubbard-model

As a first step we chose not to include any explicit time-dependence,
but look at the evolution of a system in thermal equilibrium. Setting
texp = 0 we could check that our code was able to reproduce the ther-
modynamic properties of the Hubbard-chain, which was, surprisingly,
the case. After this little milestone we increased the expansion time
and we already know what should happen to the observables: Abso-
lutely nothing, the system is in thermal equilibrium. All observables
should have their thermodynamic values independent of the chosen
expansion time texp (see Figure 10 for proof). Although we know that
the observables don’t change, there are still a couple of observables
of interest, namely those specific to the Monte-Carlo process. These
are the average sign 〈s〉 and the average length n of the generated
configurations Cn, denoted by n(Cn). n may not be confused with
the average expansion order from eq. (4.35)! 〈n〉 is the thermal average
of a physical observable and thus is constant for all times, while n is
determined by the peculiarities of the Monte-Carlo process and seems
to grow proportional to texp. Because the single-site model shows some
deviations in its distribution(Figure 6) we take a close look at that first
and compare it to larger chains later. In Figure 4 we see the average
configuration length of the single-site Hubbard-model. At texp = 0 we
start out with the thermal value of the Configuration length of ≈ 0.16,
and for times up to 5.3 the configuration length seems to increase
linearly with texp. After that occur large jumps to 3 and 12 which
are connected to sharp drops in the average sign(see figure 5). This is
due to deviations from the gaussian shape of the distribution of n̄(see
Figure 6). The sign starts out at 1 and, in the special case of the 1-site

Figure 4: This is the average configuration length of the single site Hubbard-
model. The Configuration length is plotted logarithmically against
texp. Although having error-bars the figure should only be trusted
up to ≈ 5.5, as beyond that, the simulation has problems of satisfying
ergodicity.
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model, decays rather slowly. At texp ≈ 6 the sign drops and it drops
even more around 6.4. The oscillating behaviour at these points is an
artifact of the Monte-Carlo sampling of the distribution that now seems
to have two peaks. Figure 6 shows that the distributions are centered
at 0 and for larger times upto 5 the distribution only broadens a little
bit. At around texp = 5.5 there are configurations with a significantly
larger n (up to n = 30 which is of course a long way off of the thermally
expected 0.16) and at around texp ≈ 6 the deviation from the initial
distribution is clearly visible. It is not yet clear whether this is a gen-
uine feature of the combined real-time and imaginary-time expansion
that we use or some artifact of an imperfect Monte-Carlo sampling.
Initially the distributions are centered at 0 and for larger times up Very likely the

simulation has also
not yet thermalized,

as it has a very hard
time reaching that

second emerging peak
of the histogram.

Figure 5: Average sign of the single-site Hubbard model. What was written for
the average order is also valid here: The values are trustable up to 5.5.

to 5 the distribution only broadens a little bit. At around texp = 5.5
there are configurations with larger n and at around texp ≈ 6 the
deviation from the initial distribution is clearly visible. Figure 7 shows
that as the distribution of the configuration length gets out of hand,
the physical observables remain stable despite the anomalies of the
distribution. Having explained our findings for the one-site model at
large times we can compare Monte-Carlo observables for chains of
different length. In figure 8 we show the dependence of the average
configuration length on the chosen texp for different chains. We find
that n̄ increases linearly with texp, which is in agreement with findings
of [18], and extends them to the case of the combined imaginary-time
and real-time approach we use. In the logarithmic plot of figure 9 we
see the decay of the average sign depending on the chosen texp. We
see that it decays roughly exponentially for all examined system sizes.
We conclude from Figure 8, that the linear increase of the perturbation
order with texp is not a very severe problem. The real limiting factor
is, as shown in figure 14, the dynamical sign problem arising from the
different sources of imaginary units in the expansion of the observables
(see eq. (4.31)), like the complex-valued free Green’s function and the
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Figure 6: A plot of the distributions of log(Cn) at different texp. All distribu-
tions are normalized in that way, that p(C0) = 1.

(a) texp = 1 (b) texp = 5

(c) texp = 6 (d) texp = 6.7

Figure 7: The double-occupancy of the single-site Hubbard-model for differ-
ent times. As predicted they’re straight lines. Also for times larger
than texp = 6 the observables remain constant albeit the distribu-
tion(Figure 6) contains anomalies.
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(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 8: Configuration length vs. texp for chains of different lengths. The
linear increase is clearly visible.

Figure 9: In this logarithmic plot we see the decay of the average sign depending
on texp. It decays roughly exponentially.
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phase-factors. For system-sizes up to ≈ 4 we can get a controllable
sign to texp ≈ 1t(t, the hopping parameter). If we make the usual
assumption that t is approximately of the magnitude of 1eV this would
correspond to texp ≈ 10−15 = 1fs in SI-units. As only time-scales of
femtoseconds are accessible to us, we are limited to the study of elec-
tron dynamics. Figure 10 proves that the Monte-Carlo process is able to
reproduce the expected straight lines within the error bars. As examplesExciting! isn’t it?

we have chosen a one-particle observable like the kinetic energy 〈H0〉
and a two-particle observable like the double occupancy 〈n↑n↓〉. These
physical observables remain constant for all times independent of the
chosen texp, although increasing texp worsens the sign-problem and
thus leads to bigger error-bars. As Figure 10 also shows the values
of the observables are symmetric around their maximum texp and,
being real-valued observables, their imaginary parts vanish within their
error-bars. This symmetry around texp is also seen in the real-time axis
part (between 0 and 2texp) of the contour-ordered Green’s function
G
↑
00(s, 0) = 〈c

†
0↑(s)c0↑〉. Knowing that the average sign decreases with

increasing system size we have chosen the two-site model for the study
of further properties of the average sign and its dependence on other
parameters. Figure 11 shows the Green’s function on the first site of a
two-site Hubbard-model. We clearly see the oscillating behaviour on the
real-time axis and that G is symmetric at texp. For s > 2texp G reduces
to an imaginary-time Green’s function G(τ, 0). We also know that for the
Hubbard-model the imaginary-time Green’s function is a real-valued
entity, which is also the case for the contour-ordered Green’s function
where the imaginary-part vanishes for s > 2texp. In Equation 4.16 we
have introduced the parameter δ, of which we claimed that it can be
used to reduce the sign-problem. Figure 12 shows the dependence of
the average sign on δ. In the particle-hole-symmetric case(N = 2, 4) the
average sign can be improved by lowering δ close to 0. This also leads
to a decrease of the average order n̄, although one has to take care that
a small δ can lead to a suppression of even expansion-orders in the
Hubbard-model. Because of this δ = 0 is usually not a good choice. This
optimization doesn’t work away from particle-hole symmetry(N = 1

and 3). A value like δ = 0.5+ 0+ is best then [44]. Another interesting
question was how the average sign depends on β for a given expansion
time. Figure 13 shows that the sign remains approximately constant for
β ∈ [1, 128]. Choosing a β lower than texp ≈ 0.5 leads to an increase
from s ≈ 0.2 to s ≈ 0.3. Thus if we have a β significantly larger than
texp we are in a regime dominated by the imaginary time and if we
are smaller than texp, where the sign remains at least a bit constant
we are in a regime where the real-time evolution is dominant. At last
we take a look at the dependence of the system size for some fixed
expansion times. Figure 14 shows that the average sign decays very
roughly exponentially for a given texp.
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〈n↑n↓〉 and Ekin of a two-site Hubbard-model

(a) 〈n↑n↓〉 for N = 2, texp = 0.1. (b) 〈H0〉 for N = 2, texp = 0.1.

(c) 〈n↑n↓〉 for N = 2, texp = 0.25. (d) 〈H0〉 for N = 2, texp = 0.25.

(e) 〈n↑n↓〉 for N = 2, texp = 0.5. (f) 〈H0〉 for N = 2, texp = 0.5.

(g) 〈n↑n↓〉 for N = 3, texp = 0.5 (h) 〈H0〉 for N = 3, texp = 0.5.

Figure 10: The observables remain constant within their error bars. Here β =

16,U = 2,µ = 0. We have chosen as an example for a two-particle
observable the double-occupancy 〈n↑,0n↓,0〉 and for a one-particle
observable the kinetic energy 〈H0〉.
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Figure 11: The contour-ordered Green’s function G
↑
00(s, 0) of a two-site

Hubbard-model along the full interval of s.

Figure 12: The dependence of the sign on δ.
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Figure 13: The dependence of the sign on β.

Figure 14: The dependency of the average sign on the system size. It decays
roughly exponentially with N.
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5.3 kippmodell

Having studied an example without explicit time-dependence the next
step was to introduce a time-dependent interaction into the Hamilto-
nian. There are two possibilities for this, we could introduce a time-
dependency into the interaction part and evaluate it with Monte-Carlo
or we could introduce the time-dependency into the one-particle part of
the HamiltonianH0 and hope for an analytic solution of the free Green’s
function. Now we take a look at the former approach. The "Kipp-
Modell" is a two-site Hubbard-model that contains a time-dependent
one-particle interaction, and thus allows an analytical calculation of the
free Green’s function:

H = −2t
∑
σ

(c†1σc2σ + c†2σc1σ) + f(t)(µ1n1 − µ2n2) +HU (5.13)

with µi being the chemical potential of a site, ni the number of particles
on a site and f(t) is the function for the switching procedure; in our
case it is f(t) = Θ(t− tpert). tpert is the time at which the interaction
is switched on. The interaction part HU is the same as in the Hubbard-
model and gets evaluated by Monte-Carlo. A bosonic version of a
similar model was studied in an experimental setup in [57] with the
additional constraint that the chemical potentials are chosen symmetric.
They use a setup where they prepared two 87Rb atoms in an optical
lattice. Applying a magnetic field, the potential bias between different
sites can be changed. On timescales of ms they observe oscillations
of the spin population due to super exchange interactions. Lacking
access to ms timescales we use the model just as another benchmark
to show that the algorithm is able to reproduce true time-dependent
behaviour with different initial conditions within the limits set by the
sign problem. As the algorithm needs free Green’s functions as its input
we start by sketching the calculation. The Heisenberg-equation (3.5) for
the fermi-operators leads us to consider

−i
d

ds

(
c
†
1σ

c
†
2σ

)
=

(
µ1f(s) 2t

2t µ2f(s)

)(
c
†
1σ

c
†
2σ

)
. (5.14)

The equations for the annihilators are the same except for a global
minus-sign on the right-hand-side. These Equations have to be solved
subject to the initial condition

c†x(tpert) = c
†
x. (5.15)

We only go through the calculation of the part where the new chemical
potentials act. The time-dependency of the operators on those parts of
the contour without chemical potential can be derived by setting µ1,
µ2 to zero. The eigenvalues of the above equations are

λ1/2 =
µ1 − µ2
2

± 1
2
A. (5.16)

with A =
√
(µ1 + µ2)2 + 16t2. Thus in its eigensystem the time - de-

pendence of new operators α is

α
†
1σ(s) = α

†
1σ(0)e

iλ1z(s) (5.17)

α
†
2σ(s) = α

†
2σ(0)e

iλ2z(s). (5.18)
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In the space of the c†’s this means(
c
†
1(s)

c
†
2(s)

)
=

1

N1

(
2tα
†
1(0)e

iλ1z(s) − xα†2(0)e
iλ2z(s)

xα
†
1(0)e

iλ1z(s) + 2tα†2(0)e
iλ2z(s)

)
(5.19)

where we introduced x = λ1 + µ2 and N21 = 4t2 + x2. The α†x(0)’s can
be determined from the initial conditions (5.15). A similar calculation
for the annihilators gives(

c1(s)

c2(s)

)
=

1

N1

(
2tα1(0)e

−iλ1z(s) − xα2(0)e
−iλ2z(s)

xα1(0)e
−iλ1z(s) + 2tα2(0)e

−iλ2z(s)

)
(5.20)

with similar initial conditions. Having the evolution of the Fermi-
operators one can start piecing together the lesser and greater Green’s
functions like G0,>

ij (s, s ′) = 〈c†i(s)cj(s
′)〉 and vice-versa for G0,<(s, s ′).

Having introduced a true time-dependency we can start to compare
our results to more interesting functions than straight lines. The exact
results were derived using ED with Mathematica. Figure 15 shows that
a one-particle observable like the Kinetic Energy can be reproduced.
Figure 16 shows the same for a two-particle-observable like the double-
occupancy. In figure 17 we compare the kinetic energy with different
initial conditions. We see that if the perturbation sets in at a later time
tpert the behaviour of the kinetic energy afterwards is reproduced and
that up to that point the thermodynamic value is reproduced within its
error bars. Thus we conclude that the algorithm is able to reproduce
time-dependent behaviour in simple models.

Figure 15: We compare the Kinetic Energy to exact results.
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Figure 16: We compare the double occupancy to exact results. The shaded area
around the thicker lines is the area that is taken up by the error-bars.

Figure 17: We compare the Kinetic Energy at different initial conditions



6A N E X A M P L E F R O M U LT R A C O L D - AT O M
E X P E R I M E N T S

I love deadlines.
I like the whooshing sound they make as they fly by.

— Douglas Adams

6.1 introduction

Ultracold quantum gases received much attention lately from theoreti-
cal physicists due to the possibility to study many-particle models ,not
in some "dirty" environment like solid states where the models always
present some kind of idealization, but very much like in a clean labo-
ratory. Besides the realization of phenomena that are already known
from real world solid state physics it is also interesting to ask whether
the new degrees of freedom offered by cold atom experiments could
give rise to states of matter which do not have obvious counterparts in
the known interacting electron physics. In this vein [59] explored the Despite mainly being

a zoological garden
for theoretical
physicists there might
be applications for
ultracold quantum
gases as sensitive
devices for force
measurements [58].

dependence of the 2D SU(N) Hubbard-model and thus its dependence
on the number of internal symmetries with an functional Renormaliza-
tion Group (fRG)-method in anticipation of a future realization in cold
atom experiments. The new opportunities that experiments with ultra-
cold atoms offered sparked a lot of research into the nonequilibrium
dynamics of the Hubbard-model. In this context we study the effect of
the rapid change of a parameter of a physical model. We consider a 1D
Hubbard-model where the Hubbard-interaction HU is switched off at
time 0.

H(t) = H0 + (1−Θ(t))HU (6.1)

Note that we neglected the interaction with an optical trap. Thus we
have prepared the system in a correlated initial state given by H0 +HU
and evolve the system only with H0. Due to this particular real-time
dynamics a number of questions arise:

• Does the system evolve to a new steady-state?

• What is the nature of this state?

• Does the system retain memory of the initial state?

• Is the new state related to the initial thermal equilibrium state?

Some of these questions have been addressed for similar models in the
literature There has been extensive work on 1D bosonic systems experi-
mentally [36, 60] as well as theoretically [61, 62, 63] for nearly integrable
systems. [60] investigated the thermalization of strongly interacting
ultracold atoms in a nearly integrable situation and found that on the ex-
perimentally accessible time-scales the thermalization to the initial state
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did not occur but instead to a non-thermal steady state was reached.
The transition from a metallic to an insulating state of the 3D fermionic
Hubbard model depending on the confinement was studied in [64]. 1D
Fermionic models in an optical trap at T = 0 were treated numerically
in [65]. They found Mott-insulating regions in certain ranges of U and
the total particle number N. In the experiments where thermalization
to a non-thermal steady-state was observed, the existence of the differ-
ent steady-state has been linked to the integrability of the examined
systems, which inhibits the full relaxation due to additional conserved
integrals of motion. But as the numerics showed even detuning the
models away from integrability did not always lead to the thermal
steady state, but often the systems did not equilibrate. In the classical
case it is assumed that non-linearities in the equations of motion gener-
ate chaotic behaviour and will finally lead to the thermalization of the
system. This behaviour is not present in quantum mechanics where the
unitary time-evolution operator U(t, t0) acts on an initial state from the
Hilbert-space in a way such that the initial state is mapped on a time-
parametrized trajectory of states where the constraints given by the
integrals of motion always hold. Expectation-values of observables also
show the equilibration to non-thermal equilibrium states. To account for
the behaviour in integrable systems it was suggested that generalized
statistical ensembles that explicitly contain the conserved quantities can
be used to describe the long-term stationary behaviour[66], similarly to
the construction of statistical mechanics from the principle of Maximum
Entropy constrained by the conserved quantities [67, 68]. But that still
leaves open the question why non-integrable systems can exhibit a
thermal long-time behaviour and for what reason. In earlier works a
possible solution to this dilemma was the proposed ETH by Deutsch[69]
and Srednicki[70] which was also invoked to explain recent numerical
results [71]. The ETH states that given the expectation value 〈Ψα|A|Ψα〉
of a few-body observable A in an eigenstate |Ψα〉 with energy Eα, of a
large interacting many-body system equals the thermal, microcanonical
average 〈A〉micro(Eα) of A at the mean energy Eα:

〈Ψα|A|Ψα〉 = 〈A〉(Eα) (6.2)

What does this mean for the emergence of the final thermal state?
This means that every eigenstate of a Hamiltonian always implicitly
contains a thermal state. Initially the coherence between the states
hides the thermal state, but dephasing due to time dynamics reveals
it (Figure 18). There are no definite general proofs for the validity of
ETH but there are results in some limits and a number of numerical
results(see [71, 61, 72]). A similar model as ours without interactions
was studied using a QMC-solver within the DMFT framework in [35] with
the difference that instead of starting from a correlated initial state they
started from free electrons and switched on U at t = 0. They studied
the resulting dynamics due to the quench from small U values to large
U values and found that a rapid thermalization occurs at large and
small values of U and that at a critical Udync = 3.2 the oscillations fade
out. They call this a dynamical phase transition. It is not clear whether
there is a relation to a thermodynamic phase-transition.
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Figure 18: Thermalization in classical vs. quantum mechanics. From [71]

6.2 observations

In our simulation we start from a finite U and release the system
to U = 0, so we just have to prevent the Monte-Carlo process from
generating interaction-vertices on the real-time axis. Because of this
and because we’re in 1D we don’t suffer from the sign problem and have
the possibility to access arbitrarily large times. Of course we first had to
benchmark this approach, so we compared to ED data[73]. We can see

Comparison with Data from ED

(a) N = 6 (b) N = 8

Figure 19: We compare the double occupancy from the simulation to some data
from ED.

that the code that implements the algorithm handles that case rather
well. We can already deduce from the results produced so far, that we
expect most observables to oscillate to some new behaviour and that
we might need larger system sizes to get a grip of the finite size effects.
Next we compare some correlation functions to the naive expectation
that the system should relax to a state given by the pure non-interacting
density matrix ρ0 = e−βH0 . Values determined with this density-matrix
are given by the red thick lines in the diagrams.
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6.2.1 Charge-charge correlation functions

Assessment of finite-size effects
in the charge-charge correlation functions

(a) 〈n0n0〉 (b) 〈n0n1〉

(c) 〈n0n2〉 (d) 〈n0n3〉

(e) 〈n0n4〉 (f) 〈n0n5〉

Figure 20: Charge-charge correlation functions for sites of different distances.
We compare chains of length 44 with shorter chains to check for
finite-size effects. Here β = 15,U = 2,µ = 0.

Figure 20 shows the Charge-Charge-correlation function of site 0
with sites 0 to 5. We don’t show longer correlations as their values are
too early limited by finite-size effects. The charge-charge-correlation-
function between different sites is defined as

〈ninj〉 = 〈(ni,↑ +ni,↓)(nj,↑ +nj,↓)〉. (6.3)

Note that in this correlation function the uncorrelated part 〈ni〉〈nj〉 = 1
is still included. The correlation function in figure 20a allows us to
observe the finite size effects. The dependence of the first reoccurring
oscillation is linear in the system size. Thus the finite-size effects limit
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the maximum time for which we can do meaningful measurements,
and the linear dependence might be expected for a 1D system. We see
that after some initial oscillations the correlation functions reach a new
steady state. There seems to be some kind of odd-even effect at work
here as the new steady state of even distance correlation functions is the
thermal one of ρ0, whereas the new state reached by the odd distances
is not the expected state. This might be due to the anti-ferromagnetic
ordering present in the ground-state of the 1D Hubbard-model. That the
reached values don’t necessarily match the values determined with ρ0
is no surprise, because — as stated before — the additional conserved
quantities should be taken into account when trying to construct a
new density-matrix that describes this new state. As one increases the
distance in the even case the reached state more closely resembles the
expected value(assuming that the clearly visible finite size effects play
no role).

6.2.2 Spin-spin correlation functions

Next we are looking at spin-spin correlation functions. The spin-spin
correlation function is defined as

〈SziS
z
j 〉 =

1

4
〈(ni,↑ −ni,↓)(nj,↑ −nj,↓)〉 (6.4)

with the familiar Sz operators, where it is implicit that we chose z as the
quantization axis. This is the pure correlated part as 〈ni,σ〉− 〈nj,σ〉 = 0.
We see similar structures like in the charge-charge-correlation functions.

Spin-spin correlation functions

(a) 〈Sz0Sz0〉 (b) 〈Sz0Sz1〉

(c) 〈Sz0Sz2〉 (d) 〈Sz0Sz3〉

Figure 21: Spin-spin correlation functions for sites of different distances We
compare lattices of length 44 with lattices of length 40 to check for
finite-size effects. Here β = 15,U = 2,µ = 0.
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The finite-size effects limit the maximum time that we can observe to
around 10 in the case of the 44-site chain. The correlation on the same
site (figure 21a) decays rather fast and shows almost no oscillations,
but as we increase the distance the oscillations remain longer and from
a distance of 3 onwards we’re probably limited by finite-size effects
and can’t see the reaching of a new steady state. Except probably the
on-site correlation, no spin-spin-correlation function equilibrates to the
value given by ρ0.

As a lot of spin-spin correlations are close around a value of 0 it is
interesting to take a look at the correlations in k-space. The correlation

Figure 22: Spin-spin correlation for k = π. No error bars are available.

between spins moving in different directions decays very fast(the mini-
mum of the first drop is around t = 0.65) and then oscillations around
a value of S(π, t = 0)/2 arise. Due to the lacking error bars there’s
probably no right way to assess the finite-size effects, but judging from
the second reoccurring oscillation at t ≈ 9 to t ≈ 10(that distinguishes
the two graphs quite a bit), we can guess that we’re seeing the steady
state behaviour up to ≈ 9. This is a clear indicator of a memory-effect.
In comparison the spin-spin correlations of a free electron-gas, as given
by ρ0, vanishes. But in our case they remain clearly visible as their
numerical value only halves.

6.2.3 η-pairing correlations

There’s one interesting observable left in the data from our simulations:
the η-pairing. An η-pair is created by

η
†
Q =

∑
k

c
†
k,↑c
†
−k+Q,↓. (6.5)

We define the η-pairing correlation function as:

〈η†Q(t)ηQ(t)〉 =
∑
k,k ′
〈c†k,↑(t)c

†
−k+Q,↓(t)c−k ′+Q,↓ck ′,↑〉. (6.6)
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Interestingly the η-pairing provides an additional conserved quantity if
the chain has an even length. As the evolution of a creation-operator is
given by c†k,σ(t) = e

−itε(k)c
†
k,σ, an η-pair evolves like

η
†
Q(t) =

∑
k

eit(ε(k)+ε(−k+Q))c
†
k↑c
†
−k+Q,↓ (6.7)

with ε(k) = −2t cos(k). This quantity is a constant of motion if Q = π.
This can be observed for example in Figure 23 as the value given by
n = 22. Comparing with the lattice of length 40 (η-pairing not shown)

Time-Evolution of Eta-Pairing functions

t

Figure 23: The η-pairing. The values of n that are given in the legend determine
the impulse as Q = 2πn

N . For a given value of n the color directly
below in the legend shows the value determined with ρ0. Here
β = 15,U = 2,µ = 0,N = 44.

we can deduce that the finite-size effects are Q-dependent. For the
Q = 0 correlation the finite-size effects limit the time to ≈ 11.6. But this
seems to be sufficient to probably observe steady-state behaviour in a
non-thermal state as the graph is a large way off the expected value.
As we go to higher values the finite-size effects are not visible and
the period of the oscillations get longer. Also no correlation function
reaches the values determined with ρ0. In particular the particle-hole
symmetric point Q = π is constant (that’s expected, we’ve proven that
it’s a constant of motion) but is visibly away from the value determined
with ρ0.

We’ve seen that a lot of observables that we studied didn’t equilibrate
to a steady state given by the density-matrix ρ0, as one might expect in
a first, naive guess. The construction of a density-matrix that describes
this new steady state should take into account the constraints given by
the additional conserved quantities. Additional conserved quantities
are all particle-densities in k-space because

[H0,nk,σ] = 0.
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As nk,σ is a conserved quantity the fermi-surface of the initial system,
given by ρ, stays conserved for the whole time-evolution. Another
conserved quantity is the particle-hole symmetric point with Q = π of
the η-pairing.

Future work that tries to construct the density-matrix of the non-
thermal steady-state would thus have to take into account at least the
particle-densities nk,σ and the particle-hole symmetric point of the
η-pairing. Since in [35] the existence of a prethermalization regime
is mentioned we should check with larger times to make sure that a
thermalization doesn’t occur after longer times.
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6.2.4 The dynamics of the transition from the Mott-insulator to a metal

Having studied the time-evolution of some observables we take a look
at the evolution of the lattice as a whole. First we look at the correlated
part of the charge-charge correlation, that is 〈ninj〉−1. Figure 24 shows The most visible effect

of this subtraction is
the explosion of the
error bars. . .

the evolution of the charge-charge correlation function in the lattice for
different times. For t = 0 we see signatures of the exponential decay of
the correlation with the distance — a characteristic of an insulating state,
here due to the Mott-insulating state of the Hubbard-model. Later for
t = 1.2 we see the emergence of a front from left with approximately
constant correlation. This is a signature of the metallic state that is
beginning to propagate through the lattice. To the right of the front the
exponential decay is still present and thus there still is the insulating
state. At later times the front propagates further through the lattice up
to a time of around t = 4.2 where we’re limited again due to finite-size
effects as the front comes from is meeting its partner that propagated Periodic boundary

conditions!to the right. For t = 3.0 the front has approximately reached site 13
thus it has velocity vC = 13/3.0 ≈ 4.3, that is it propagates 4.3 sites for
a interval of time of 1. This little argument is in nice agreement with an
analysis by linear regression which yields a velocity of the change in the
charge-charge correlation of vC = 4.14± 0.17. The emergence of that
front in the charge-charge correlations is in agreement with mean-field
calculations [73]. Thus we observe the expansion of a metallic state
through the lattice. Notable, but expected, is the dependence of the
speed on the remaining parameter t of the model. Thus the system is
not immediately transforming to a metallic state but only as fast as the
front propagates through the system and the speed is given by a model
parameter.

There is also a front in the pairing correlation functions, as shown in
Figure 25, although a little more goodwill and guesswork are needed.
For t = 0 we see the initial state of the Hubbard-model, something
like an exponential decay from which we conclude that the system is
an insulator for the transport of η-pairs. At t = 0.6 we can guess the
development of a front and still see the exponential decay to the right
of it. At t = 1.8 the front on the left side of the picture is clearly visible
and the exponential decay to the right of it can be guessed. For t = 3.6
we are again limited by the finite size effects but we see that large parts
of the system have chosen to get into the plateau part of the front which
should allow the transport of η pairs. The emergence of the front in
the η-pairing is consistent with meanfield calculations [73]. We can also
determine the speed of the front for the η-pairing. Linear regression
gives for the velocity of the change in the η-pairing of vη = 4.69± 0.21
which is a bit faster than the velocity of the charge. But they would be
consistent within two standard deviations.
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Evolution of charge-charge correlation

r

Figure 24: The transition from the insulating state of the Hubbard-model to
something that more resembles a metal as seen in the charge-charge
correlation 〈nrn0〉− 1. For visibility only the first and the last pic-
ture have y-axis labels. The x and y scales are the same in all pic-
tures. The black lines are guides for the eye that delineate metallic
phases(usually on the left if visible) from insulating phases.
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η-pairing correlation functions

r

Figure 25: The same transition as in the charge-charge correlation function
(24) in the η-pairing 〈ηrη0〉. For visibility only the first and the last
picture have y-axis labels. The x and y scales are the same in all
pictures. No error-bars are available but, as a rough guess, they
should resemble those of figure 24.
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The same study in the spin-spin correlation function through the
whole lattice proceeds a bit differently. Figure 26 shows the spin-spin
correlation function for different times across the whole relevant part
of the lattice. For t = 0 we see the anti-ferromagnetic order of the
Hubbard-model. Then, when we switch off U, wait a little bit, and
already for t = 0.42 the correlations have significantly decreased(see
also Figure 27). Waiting till t = 0.9 the correlations have completely
melted away.

Spin-spin correlation functions for different times

r

Figure 26: The Spin-spin correlation function 〈SzrSz0〉(t) for different values of t.
The x and y scales are the same and linear in all pictures.

To better observe this change from the initial thermal state we plotted
the quantity 〈SzrSz0〉(t) − 〈S

z
rS
z
0〉(0) in figure 27. For t = 0.06 we see

that the changes in the correlation have already propagated to the first
site. The next picture, 0.06 later, the front of the correlation is two sites
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Change of the spin-spin correlation functions depending on time

r

Figure 27: The quantity 〈SzrSz0〉(t) − 〈S
z
rS
z
0〉(0). For visibility only the first and

the last picture have y-axis labels. The x and y scales are the same in
all pictures.
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further. It is safe to say that this front has fully traversed the lattice
for t = 0.42. Thus we see that changes in the spin-structure propagate
at least an order of magnitude faster. Linear regression determines
the speed of the changes in the spin to vS = 59.5± 2.5. A plot with a
logarithmic y-axis scale of Figure 27 would probably provide interesting
insights into the behaviour of the system but due to the already large
error-bars in the linear plot, we could deduce anything we wanted from
it.

Thus we observe different speeds for the transport of changes in the
spin structure and for the transport of charge, that resembles a bit the
spin-charge separation known form the Luttinger liquid.



7C O N C L U S I O N

When in doubt, use brute force.

— Ken Thompson

"If brute force doesn’t solve your problems,
then you aren’t using enough."

Starting from the recently developed DDQMC method we developed
a QMC method that allows to study the real-time dynamics of arbi-
trarily correlated initial states using a joint expansion in imaginary
time as well as in real-time. We tested the approach with some simple
Hubbard-like toy models where we assessed new effects of the real-time
expansion as well as the decay of the average sign. The method seems
to be working up to times of about 1t (t is the hopping-parameter of
the Hubbard-model), due to the constraints given by the dynamical
sign problem. As a non-trivial example we studied 1D Hubbard-chains
where at time t = 0 the interaction term HU is switched off. We studied
the relaxation of the system to a possibly new non-thermal steady-
state. We did examine the propagation of the change of the Hamilto-
nian through the lattice and found that the system seems to evolve
to a metallic state. Spin and charge information propagate through
the lattice with speeds that differ by about one order of magnitude.
As the measurements of the speeds are at the limit of what we can
deduce from our data future challenges will include a parallelization of
the code to use the power of computer clusters as well as supercomput-
ers to reduce the error bars. As the only source of the speed differences
can be in the initial Hamiltonian, a systematic study of the dependence
of the speeds on U is in order. Another challenge is the construction of
the initial density matrix. To that end we’ll have to do simulations with
larger system sizes to determine what is really steady-state behavior
and to make sure that we don’t see a prethermalization regime as
mentioned in [35] where observables reached their thermal behavior
on very long timescales.
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Part IV

A P P E N D I X





AF E R M I O N C O H E R E N T S TAT E S

In this section we list some properties and used notations of fermionic
coherent states integrals. For other properties and rigorous proofs see
[38]. The Unity for the j-th time-slices is

1j =

∫ ∏
α

dφj,αdφj,αe
−φj,αφj,α |φj,α〉〈φj,α|

=

∫
d~φjd~φje

−~φj~φj |~φj〉〈~φj|

=

∫
djdje−jj|j〉〈j|

(A.1)

with φj,α being a Grassmann number. The last line is something of a
shorthand notation. There’s also an expression for the trace operation
in coherent states:

TrA =

∫ ∏
α

dφj,αdφj,αe
−φj,αφj,α〈−φj,α|A|φj,α〉

=

∫
d~φjd~φje

−~φj~φj〈−~φj|A|~φj〉

=

∫
djdje−jj〈−j|A|j〉.

(A.2)
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